

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AUTOMATED LOGISTICS PLANNING
USING HISTORICAL ANALOGIES

by

Mark J. Davis

June 1987

Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited

T 233124

UNCLASSIFIED
SECURITY ClASSlF iCaTiON OF ThiS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION

Unclassified
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
Distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUVBER(S)

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School
6b OFFICE SYMBOL

diSK"**
9 *

la NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

be ADDRESS (Ofy. State and ZlPCode)

Monterey, California 93943-5000

7b ADDRESS (Cry. State, and ZIP Code)

Monterey, California 93943-5000

3a NAME OF FUNDING i SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(if applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (dry. State and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TAS<
NO

WORK JNIT
ACCESSION NO

n T;TiE (include Sectary Claudication)

AUTOMATED LOGISTICS PLANNING USING HISTORICAL ANALOGIES (u)

12 PERSONAL AuThOR(S)

Davis, Mark J
' 33 'Y ? t OF REPORT

Master's Thesis
i 3b TiME COVERED
FROM TO

14 DATE OF REPORT (Year Month Day)

19 87 June
1S PAGE COoNT

113
'6 SUPPLEMENTARY NOTATION

COSATi CODES

ElD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Automated Logistics Planning Systems; Analogie;
Tactical Logistics Estimates

'9 ABSTRACT (Continue on reverie if necessary and identify by block number)

The current method for creating tactical logistics estimates in the Army
inadequately incorporates historical data on the actual consumption of
supplies. The automated-logistics-planning system described in this thesis
addresses this deficiency. The program developed in this research produces
general estimates for selected supply items by referencing equations and
variables from current Army planning documents and performing the necessary
calculations. The program uses reasoning to Identify previous operations
which are analogous to the current operation. Separate criteria are used
to identify the strongest analogies to the current operation for each of
five categories of supply items. Information contained in the historical
records of the three strongest analogies in each category is used to revise
the general estimates. The revised estimates are hooefully more accurate
in predicting actual supply requirements for the current ooeration than
10 D S'R'BUT.ON AVAILABILITY OF ABSTRACT

£l ..'NCLASSiF'ED'UNLiMlTED Q SAME AS RPT D DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL

Prof. Neil C. Rowe
22b TELEPHONE (Include Area Code)

(408) 646-2462
22c OFFICE SYMBOL

S2Rn
DDFORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF ThiS PAGE

Unclassified

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whan Dm* Bnf*r«<)

#19 ABSTRACT (Continued)

the estimates generated by formula alone

S N 0102- LF- 014- 6601
Unclassified

SECURITY CLASSIFICATION OF THIS F-AGEfWh.n Datm Bnffd)

Approved for public release; distribution is unlimited.

Automated Logistics Planning
Using Historical Analogies

by

Mark J. Davis
Captain. United

7

States Army
B.S.. United States Military Academy, 1980

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

ABSTRACT

The current method for creating tactical logistics estimates in the Army

inadequately incorporates historical data on the actual consumption of supplies. The

automated-logistics-planning system described in this thesis addresses this deficiency.

The program developed in this research produces general estimates for selected supply

items by referencing equations and variables from current Army planning documents

and performing the necessary calculations. The program uses reasoning to identify

previous operations which are analogous to the current operation. Separate criteria are

used to identify the strongest analogies to the current operation for each of five

categories of supply items. Information contained in the historical records of the three

strongest analogies in each category is used to revise the general estimates. The revised

estimates are hopefully more accurate in predicting actual supply requirements for the

TABLE OF CONTENTS

I. INTRODUCTION 8

A. BACKGROUND 8

B. RESEARCH TOPICS 9

C. THESIS ORGANIZATION 10

II. PROBLEM DEFINITION 13

A. TACTICAL LOGISTICS PLANNING TODAY 13

B. SURVEY OF PREVIOUS RELATED WORK 15

III. PROGRAM DESIGN AND IMPLEMENTATION 18

A. MAJOR PROGRAM FUNCTIONS 18

B. DATA STRUCTURES 19

C. CREATING A LOGISTICS ESTIMATE 20

1. Input 20

2. Database Operations and General-estimate Calculation 21

3. Reasoning 22

4. Adjustment Algorithm 24

5. Output 25

D. UPDATING RECORDS 25

E. DELETING RECORDS 25

F. PRINTING A DIRECTORY 25

G. PRINTING HISTORICAL RECORDS 26

IV. CONCLUSION'S 27

A. PROGRAM STRENGTHS 27

B. PROGRAM LIMITATIONS 27

C. PROMISE FOR THE FUTURE 30

APPENDIX A: LOGISTICS ESTIMATE DEMONSTRATION #1 32

APPENDIX B: LOGISTICS ESTIMATE DEMONSTRATION ^2 44

APPENDIX C: SAMPLE OUTPUT FROM OTHER PROGRAM
FUNCTIONS 56

APPENDIX D: PASCAL PROGRAM 61

APPENDIX E: PARTIAL PROGRAM IMPLEMENTATION IN
COMMON LISP 98

LIST OF REFERENCES 110

INITIAL DISTRIBUTION LIST Ill

LIST OF FIGURES

3.1 Program Top Level Design 19

I. INTRODUCTION

A. BACKGROUND
The conduct of military operations is inextricably interwoven with the ability to

support them. One of the five Principles of War, Mass, has as its premise that superior

combat power must be concentrated at the decisive place and time in order to achieve

decisive results. Logistics planning is fundamental to achieving this aim. It defines

realistic scenarios for the study of alternative courses of action, and determines directly

the length of time that weapons and units can be effective.

In the United States Army, the tactical commander is responsible for logistics

planning. He normally has assigned to him certain staff who assist him in estimating

the logistics requirements of anticipated or considered actions, and in incorporating

whatever limitations exist into his battle planning. Logistics planning at this level is

dominated by the creation of estimates and the reporting of equipment, supply, and

personnel status. Logistics estimates are created often and represent a significant work

load for those soldiers whose job it is to produce them for the commander.

There are currently no automated methods for assisting the tactical logistics

planner in creating such estimates. Training Management and Control System

(TMACS) is a software system currently in use in the Army which assists operational

planners in programming and budgeting time, money, and supplies for training

exercises [Ref. 1]. It does not, however, satisfy the need for an automated aid in

preparing logistics estimates for actual tactical operations and in the conduct of

contingency planning.

At the same time, the military o[the Soviet Union places great emphasis on

automated means for enhancing their theory of control. The use o{^ computers to

perform referencing and calculations is actively pursued. Specifically, the referencing of

applicable planning factors and execution of mathematical formulae in combat

planning is an area in which they have exhibited considerable interest [Rcf. 2].

This thesis investigates the nature of logistics estimation in the tactical

environment. It identifies the merits of employing an automated system to perform

some of the current labor-intensive manual referencing of equations and planning

factors involved in creating a logistics estimate. A prototype o^ such an automated

system is one of the products of this research. Execution of the prototype on a sample

database produces output that is easily understood by the logistics planner, and offers

significant time savings in the preparation of logistics estimates.

Reasoning is used in the prototype system in an attempt to provide more

accurate logistics estimates than are currently provided by strict adherence to the

procedures outlined in current Army planning documents. The reasoning algorithm is

the most interesting facet of the prototype. The aim of all of this work is to provide

the logistics planner with an aid in providing timely, useable, and well considered

logistics estimates to the battlefield commander.

B. RESEARCH TOPICS

The first area of research centers around the process by which logistics estimates

are created today. This process is strictly manual. A single reference document, Army

field manual FM 101-10-1, contains equations and planning factors which the logistics

planner uses in calculating the quantity of several supply items required to conduct an

operation [Ref. 3]. The equations and planning factors used in these calculations are

dependent upon several key descriptions about the operation for which the estimate is

being prepared. The following tasks need to be performed by an automated system to

duplicate the actions of the human logistics planner:

1. identification of which attributes of an operation are critical to the selection of

appropriate equations and planning factors needed to calculate logistics

estimates

2. determination of how such information can best be obtained from the user of

the prototype program

3. performance of the aforementioned references and calculations.

The second area of research is concerned with reasoning about the similarity

between operations. Operations which have the same value for certain key operation

attributes can be considered analogous to the current operation. These analogies are

then evaluated to determine the strength oi~ the similarity between them and the current

operation. The criteria used to establish the analogous nature of previous operations

and the criteria used to establish the strength of the similarity between operations are

both defined in the program, but can easily be modified to reflect user guidelines. Once

the strongest analogies to the current operation have been determined, research into

how the data contained in the historical records of these operations can be used to

adjust the previously calculated estimates can be pursued.

The third area of research involves determining the method by which adjustments

to the original logistics estimates are made. Analogous historical records contain

information on both the original estimate and the actual consumption for each of the

items of supply for which the program creates an estimate. The error percentage for

each of the three strongest analogies in estimating the actual consumption of each of

the supply items is calculated. Originally, an equal weighting of the error percentages

calculated for the three strongest analogies was used to adjust the estimates for the

current operation. The final version of the prototype handles the weighting somewhat

differently. Specifically, the error percentages are weighted according to the strength of

the similarity between the operation which generated them and the current operation.

The composite error percentage is then used in a calculation which yields an

adjustment to the original estimate.

The fourth area of research deals with the format and structure o^ program input

and output. The decision was made to utilize menus as much as possible for input

from the user. Errors are common when using a program of this sort. Where menus

are not practical, escape routines were included to allow recovery from input errors.

Well structured, explanatory output is extremely valuable in understanding the

behavior of the program. An effort was made to produce one page documents. The

reasoning algorithm o[the program is illustrated in tabular, one page summaries to

assist the user in understanding how the reasoning is conducted.

C. THESIS ORGANIZATION

Chapter II discusses the manner in which tactical logistics planning is conducted

today. The data elements needed to conduct such planning are identified and their

relationship to the key operational planning document, the operation order

(OPORDER), is explained. The linear equation model used to calculate logistics

estimates is outlined, as well as the source and questionable validity of the planning

factors. The difficulties faced by the tactical logistics planner in producing logistics

estimates are identified. A short discussion on the type of reasoning expected of the

logistics planner in creating estimates concludes the chapter.

Chapter III outlines an artificial-intelligence approach to creating the logistics

estimate. An initial discussion identifies the anticipated benefits of using an automated

aid in assisting the logistics planner in creating the estimate. A lengthy discussion of

the reasoning done in the program follows. Specifically, the use of reasoning to

identify' the similarity between operations is described. Examples are given to illustrate

10

how reasoning is actually conducted in the program. The examples are helpful in

understanding the two step approach to analogy evaluation and the selection of

operation records for inclusion in the algorithm for adjusting estimates. The

importance of simple input and output formats is highlighted, with emphasis on

designing program output that reflects the reasoning which takes place in a program.

High-level design decisions in development of the prototype are explained and program

behavior is described in detail.

Chapter IV discusses the potential of the thesis for assisting the tactical logistics

planner in creating logistics estimates. The program represents a new approach to

creating these estimates by applying real-world experience in adjusting estimates.

Limitations of the program are discussed, as well as possible enhancements. The

concluding discussion of the chapter identifies how the application of an automated

logistics planning system of this type could be used in other related problem domains.

The appendices are vital to understanding the workings o[the program.

Appendix A and Appendix B are demonstrations of the program execution of the

logistics-estimate-creation module of the program. The demonstrations involve two

very different operations. The logistics estimate created in Appendix A is for an

operation conducted in Europe in a temperate environment. The logistics estimate

created in Appendix B is for an operation conducted in Korea in a cold environment.

Each demonstration includes the following items:

1. a sample interactive session in which the user inputs the numbers of weapons

and major end items in the task force

2. a sample interactive session in which the user assign values to several attributes

describing the operation

3. a one page document produced by the program listing all operations which

meet the criteria for being considered analogous to the current operation

4. a series of one page documents illustrating the reasoning in the program

determining the strongest analogies to the current program for each category of

supply

5. a logistics estimate for the operation.

Appendix C contains sample program execution of the other modules of the

program. There is a sample interactive session which updates the historical record of

an operation with actual consumption data. There is a sample interactive session

which deletes the historical record of an operation from the historical files maintained

by the program. There is a sample output produced by selecting the print-directory

11

module of the program which lists the unit name, date, and update status for all

operations in the historical files. Appendix C also contains a sample of the historical

record for an operation produced by the print-history module of the program.

Appendix D is the program implemented in Pascal. Appendix E is a partial

implementation of the program in Common Lisp.

12

II. PROBLEM DEFINITION

A. TACTICAL LOGISTICS PLANNING TODAY

In tactical units of the United States Army, the staff officer charged with the

creation of logistics estimates on behalf of the commander is the G4/S4 officer. A

typical logistics plan might include estimates for the following categories of supplies:

1 . water

subsistence

fuel

ammunition

general supplies.

To calculate estimates for supply items in each of these categories, the G4, S4 uses

equations contained in Army field manual FM 101-10-1. These equations can be

thought of as rules. Certain attributes of an operation determine either individually or

in combination the equation to be used in calculating specific estimates. These

attributes are contained in a key operational planning document called the operation

order (OPORDER). The G4/S4 must obtain a draft of the OPORDER or otherwise

reference these data elements before a logistics plan can be prepared. Attributes which

directly influence how an operation is conducted and the type and quantity of supplies

consumed in its execution include the following:

1. mission to be performed

2. climate in which the operation is to be conducted

3. area of the world in which the operation is to be conducted

4. type, size, and personnel strength of the task force

5. expected intensity of combat

6. ration policy during the operation.

There are many other factors which impact on the conduct of an operation. Current

Army planning documents, however, use only the six attributes identified above in

selecting appropriate equations from FM 101-10-1. The G4/S4 manually references the

aforementioned attributes of an operation and indexes both an equation and a

planning factor for use in calculating specific supply estimates. These attributes are

contained in the operation order (OPORDER) for the operation.

13

For example, to calculate the expenditure of 5.56mm rifle ammunition, the

following steps are taken. First, the mission and anticipated combat intensity of the

operation are identified. Second, the attributes are used to select the appropriate

equation and planning factor from the section in FM 101-10-1 covering ammunition

estimates. In this case, the general equation to estimate 5.56mm rifle ammunition is:

v- weapons * planning factor = estimate.

Maintaining data on the number of rifles in the task force which expend 5.56mm

ammunition is another task which the logistics planner is charged to perform. The

same methodology is used for the other estimates.

The equations used to create the supply estimates are simple and easy to

understand. The equations make intuitive sense as they are a function of the number

of rifles in the task force and a single planning factor. The planning factors themselves

are another subject. There has been much debate regarding their validity. Much of

the data in FM 101-10-1 was originally based upon experience in World War II and

Korea. Changes to the data have been made to reflect more recent experience and the

results of combat modelling and simulation, but distrust of the accuracy of the

planning factors continues. [Ref. 4]

The current method of creating estimates has another more serious shortcoming.

The planning factors used in the simple linear equation model described above yield, at

best, very generalized estimates. The data does not explicitly account for variable

factors such as visibility, terrain, and the availability of close air support. Each of

these impact significantly on the conduct of combat operations and on the rate at

which supplies are consumed. It is necessary, therefore, that the logistics planner apply

reasoned judgement in adjusting the estimates to reflect the particular set of attributes

of the current operation.

There is no standard policy or guideline for the logistics planner to follow in

making these reasoned judgements. Even,* commander hopes to have an experienced

logistics planner who can rely upon personal experience or insightful after-action-

reports to provide the basis for adjusting the standard estimates. All too often, the

commander is without such a key individual. In addition, the commander and the rest

of his staff continually create contingency and alternative operation plans. These plans

require that logistics planning be conducted with a corresponding cost in time and

effort. The logistics planner is seemingly always late in delivering logistics estimates to

the commander while attempting to produce complete, researched, and well prepared

plans.

14

An additional concern of the tactical logistics planner is the recording and

retrieval of data on the actual consumption of supplies. A complete accounting of the

logistically significant data about an operation is valuable in preparing future logistics

estimates. A logistics estimate of an operation, together with corresponding actual

consumption data for that operation, support the kind of reasoning described earlier.

The time and effort it takes to record actual consumption data and link it with its

associated logistics estimate often frustrates intentions to create complete historical

records. The result is that such historical records do not exist in many units. When

new personnel arrive and assume responsibility for logistics planning in the unit, they

are without the benefit of historical data on which to base their estimates.

In partial summary, the Army realizes that reliance upon the equations in F.M

101-10-1 will not yield acceptable estimates in all cases. The current method of

computing estimates is simple to follow, but requires a considerable amount of the

logistics planner's most precious commodity-time. There is also an acknowledged

need for applying experience in logistics planning to the job of improving the accuracy

of these general estimates. Experience is a hard thing to quantify, however, and many

tactical logistics planners are not experienced. For these reasons, any system which

significantly assists the logistics planner in creating estimates and performing associated

tasks without imposing additional requirements would be of great value.

B. SURVEY OF PREVIOUS RELATED WORK
Commercially available spreadsheet programs perform the kind of referencing

and calculations involved in creating logistics estimates as directed in current Army

planning documents. Spreadsheets have been used in many business applications.

They are able to adjust previous data to reflect changes in the values of program

variables. The United States Army Logistics Center has developed several templates

using a popular spreadsheet program, LOTUS 1-2-3. The templates use this program

to create logistics estimates with equations and planning factors obtained from FM
101-10-1 and variables representing the personnel strength and the equipment

composition of a task force. The templates are intended for use by logistics planners in

creating estimates for Class I (subsistence) and Class III (POL) supply items. There

are no templates currently developed to assist the logistics planner in creating logistics

estimates for supply items in the other categories of supply.

15

The templates have two major limitations. First, each of the templates is written

to run independently. This means that a logistics planner who desires to run both of

these programs must run them separately. The estimates generated by the two

programs must be abstracted onto a single document along with estimates for other

supply items when creating an overall estimate for the operation being conducted.

Second, the template used to create these logistics estimates assumes a static task force

composition. The templates use the authorized numbers of personnel and equipment

for the unit rather than the actual numbers taking part in the operation. The

authorization document used for this purpose is the Modified Table of Organization

and Equipment (MTOE) for the unit. The templates provide a valuable service to the

logistics planner by automatically completing required paper work for requisitioning

supplies. The inflexibility of the templates in accepting changes to the task force

composition, however, causes them to fail to make full use of the power of the

spreadsheet program, and limits the utility of the templates as an automated planning

tool.

There has been little published on the use of analogies in creating logistics

estimates. Much of the literature in operations research focuses on the use of

numerical analysis in creating and revising estimates [Ref. 5]. Strictly numeric

techniques, however, sometimes fail to model and predict physical phenomenon.

Optimization techniques involving numerical analysis do not work when the result of

the analysis is a guess or estimate of a future outcome [Ref. 6]. Such techniques are

best suited to problems where the possible outcomes are known in advance. Logistics

estimation at the tactical level is not an exact science and is resistant to attempts at

applying such techniques. Non-numeric reasoning, called heuristic reasoning, has

proven valuable in prediction and forecasting when numerical analysis has proven

difficult or unacceptably costly. While the use of heuristics does not guarantee optimal

solution, it can produce acceptable results.

Reasoning about the similarities between situations is an interesting subject in

artificial intelligence research that has promise for assisting the prediction efforts of

logisticians [Ref. 7]. Psychometric literature includes research describing how humans

search for similarities between previous and new situations in an attempt to exploit

knowledge about previous situations in order to improve current performance [Ref. 8].

These parallel academic research efforts support the research of this thesis in

investigating the possible use of historical analogies to construct logistics estimates.

16

Some situations can be described by attributes or properties. It may be helpful

to compare the values for certain attributes or properties of one situation with the

values for the same attributes or properties of other situations in an attempt to

establish the similarities between them. If similarities between situations exist, then it

may be possible to infer some information about one such situation from information

already available about the other. With regard to logistics estimates, the influence of

certain operation attributes on the actual consumption of individual supply items might

be able to be inferred from available data on the actual consumption of supplies of

previously conducted operations. While the use of this technique to improve the

accuracy of tactical logistics estimates has not been explicitly detailed in technical

literature, it conceivably offers great potential as an estimation tool for the logistics

planner.

17

III. PROGRAM DESIGN AND IMPLEMENTATION

A. MAJOR PROGRAM FUNCTIONS

The program was designed to assist the tactical logistics planner in performing

many of the tasks associated with creating logistics estimates. To this end, there are

five major functions performed by the program.

The first and most important function is to create a logistics estimate for an

operation using information supplied by the user in an interactive session and with

data retrieved from historical files maintained in secondary storage. This function is

the real heart of the program. It references equations, performs calculations, and

contains code that reasons about the similarity of operations. The output generated by

this part of the program is of particular interest and is discussed later in the chapter.

The second function performed by the program is to update a record of a

logistics estimate with data on the actual consumption resulting from the conduct of an

operation. This function would be employed after an operation had already been

conducted, and supplements or replaces much of the effort spent in preparing logistics

after-action reports. The value of this function lies not only in its automation of the

report generation task, but also in the storage of this information in the same data

structure as the original logistics estimate for easy retrieval and logical representation.

The third function is to delete from the historical files the record of a previously

created logistics estimate. Deletions of this sort are desireable when an operation for

which a logistics estimate has been created is not conducted. If the actual

consumption data in the record is significantly iniluenced by a factor which is

considered an abnormal occurrence, the logistics planner may want to preclude its use

in future program references by deleting it from the historical files. Another

implementation might use a boolean flag for this purpose.

A fourth function is to print a directory with data on all the records of logistics

estimates in the historical files. This is an important program function because it

provides the user of the program with visibility over records currently in the historical

files without using some of the more complex functions of the program. One of the

data elements displayed in the directory output is whether or not each of the logistics

estimates has been updated. This provides an easy method for the logistics planner to

see whether an update needs to be made to a particular logistics estimate.

18

The last function of the program provides the capability of searching through the

historical files which the program has previously created and prints a one page

summary of all of the critical information associated with each of the operations. Such

information includes not only the original logistics estimate, but also actual

consumption data for each of the items cf supplies for which an estimate was prepared.

This data would be input using the record update function of the program previously

described.

Figure 3.1 shows the top level design of the program. Each of the program

functions described in this section is implemented as a module in the program.

log
estimate

update
record

program
planner

delete
record

print
directory

print
history

Figure 3.1 Program Top Level Design.

B. DATA STRUCTURES

The key design decision with regard to data structures was the manner in which

all of the information regarding the creation of a logistics estimate would be stored. A

record called an oprecord (operation record) was chosen. It contains fields which

describe all of the scenario data used by the program to create a general estimate for

each of the supply items for which the program creates an estimate. Additional

scenario data is collected and stored for the purpose of reasoning about the similarities

19

between operations. The oprecord also contains a multi-dimensional array named

consumption which contains information about each of the supply items for which the

program creates an estimate. This information includes :

1. supply item name

2. general estimate for the supply item generated by performing the calculation of

equations referenced from Fm 101-10-1 and using planning factors found in

reference 4

3. adjustments to this estimate determined by the reasoning and adjustment

techniques of the program

4. revised estimate obtained by adding the general estimate and the adjustment

5. actual consumption of the supply item during the conduct of the operation, if

such data has been placed into the record.

Information about the composition of the task force conducting the operation is

stored in an array called task force. The information contained in this data structure is

net permanent and is lost after the logistics estimate function of the program has

completed execution.

The choices for data structures in Pascal are satisfactory [Ref. 9]. The

availability of user-defined file types made file input and output straightforward. After

programming portions of the program in LISP as part o[other course work, LISP

appears to be at least as desirable a programming language for an application of this

sort [Ref. 10]. In particular, LISP structures and flavors require fewer variable

declarations, and results in program code that is easier to read. They also offer no

temptation to rely on function side effects to assign values to fields in data structures.

A partial implementation of the program in Common Lisp is included as Appendix E.

C. CREATING A LOGISTICS ESTIMATE

1. Input

The first input expected from the user after selecting the log-estimate module

of the program is the composition of the task force conducting the operation. An

example interactive session in which the user supplies the number of each kind of

weapon and major end item is found in Appendix A. The selection of weapons and

major end items included in the program was a design decision. A major criterion for

inclusion was the availability of planning factor data in FM 101-10-1 and other widely

used planning references [Ref. 4].

The program then proceeds to query the user about certain attributes

describing the operation for which the program will create a logistics estimate.

20

Examples of the queries posed to the user are contained in the demonstrations in

Appendix A and Appendix B. User responses to these queries are stored in the

operation record (oprecord) identified earlier.

An important design decision in handling program input from the user was

reliance on menus. The program is intended to serve as a prototype of an actual

logistics planning tool. The use of menus reduces the potential for user input errors

when the program is used in the field where unfamiliar users may enter erroneous

information. In addition, menus support the use of enumerated types. Enumerated

types were deemed important in promoting clarity when reading the program and

studying its design. The cost of using menus is more extensive input procedure coding.

A special point is made to ensure that the program does not impose any

additional data gathering requirements upon the logistics planner beyond those

currently in effect. All of the data requested by the program of the user is contained in

the operational planning document called the OPORDER (operation order) or its draft

referred to in Chapter I. The logistics planner can answer all program queries using

only those sources of information to which he/she has routine accesss. In event that

the operation order itself is automated, user input of some of this data might not be

required.

2. Database Operations and General-estimate Calculation

The equations and planning factors used in calculating the general logistics

estimates are implemented as procedures with extensive parameter lists. Information

about the composition of the task force and certain aspects of the operation scenario

are used to select the correct equations and variable values. The result of these

calculations is the general estimate, and is equal to the result obtained by referencing

FM 101-10-1 and performing the mathematics manually. This portion of the program

is a single-purpose database algorithm. The computer performs this operation much

faster, and with greater reliability than can a human. The estimates created by these

calculations are then stored in the operation record (oprecord) of the logistics estimate.

A restriction of the program implementation is the use o[array indices to

reference task force data. Knowledge of the data structure containing information on

the composition of the task force is used in performing the database operations. The

referencing of this data could be accomplished differently. A Line Item Number (LIN)

is uniquely associated with every weapon and major end item in the Army inventory.

Program implementation could be changed to use this attribute to reference task force

21

composition rather than relying on data structure knowledge. This would be especially

useful in an environment where the type of weapons and major end items were not

constant. It also supports the principle of information hiding [Ref 11].

3. Reasoning

The apparently intelligent behavior of the program is the result of the

reasoning it does about the similarity between the current operation and previous

operations existing in the historical files maintained by the program. The program

accomplishes this kind of reasoning by comparing the values for attributes in the

description of each previous operation with the values for the same attributes in the

current operation. The program uses a formula to determine the strength of the

similarity between the two operations. All previous operations are evaluated in this

manner. Data contained in the operation records of the three most similar previous

operations will be used in an adjustment algorithm to refine the general estimates

calculated earlier, yielding more accurate estimates.

The first phase of the reasoning process identifies all of the previous

operations that are considered analogous to the current operation. For a previous

operation to be considered analogous, it must meet the following criteria.

1. The previous operation has actual consumption data.

2. The previous operation and the current operation must have the same mission.

3. The previous operation and the current operation must take place in the same

area.

4. The previous operation and the current operation must take place in the same

climate.

5. The previous operation and the current operation must take place under the

same chemical defense posture.

6. The previous operation and the current operation must have the same combat

intensity.

7. The previous operation and the current operation were both first day

engagements or succeeding day engagements.

All previous operations are analyzed and a list of analogous operations created. The

program generates output showing all previous operations meeting this criteria and

considered analogous to the current operation. Examples of this output are found in

Appendix A and Appendix B under the heading, Analogy Reasoning.

The list of analogous operations is treated as a candidate list from which up to

three operations will be selected as input into an adjustment algorithm. The action of

22

the adjustment algorithm is to reflect knowledge about the past consumption of

supplies in' adjusting the general estimates obtained through the database

computations.

The second phase of reasoning determines which of the candidate operations

will be selected for the purpose of adjusting estimates. The program performs this

reasoning by evaluating certain attributes of the scenario descriptions of all of the

candidate operations, and allocates analogy strength points to operations which have

the same values for those attribute as does the current operation. The three candidate

operations with the greatest analogy strength points are selected for use in the

adjustment algorithm.

The sophistication of the second phase of reasoning does not end here. The

supply items for which the program creates logistics estimates are grouped into five

categories. The consumption rates for the supply items in each of the categories are

assumed to be directly influenced by the same set of operation attributes as are the

other supply items in their category. The program is able to reason about which

candidate operations are the strongest analogies to the current operation in each of

these categories independently. This is important since the consumption rates of

supply items within different categories of supply are influenced to varying degrees by

similar factors and by different conditions than are supply items in other categories.

The program adjusts the estimates of supply items in each of the categories by using

the strongest analogies to the current operation for those attributes influencing

consumption of supply items in that category. In this way, the program makes the

most effective use of the data available on previous operations. The five categories of

supply considered by the program are :

1. water

2. subsistence

3. fuel

4. ammunition

5. general supplies.

The attributes of an operation which are used in determining the strongest

analogies in each of these categories are identified in the program output. Factors

influencing the consumption rates of supplies are not equally significant. The program

applies weighting factors to each attribute and sums the value of all attributes in

determining the total strength points for a particular operation. Appendix A and

23

Appendix B both contain program output which illustrates this reasoning. Those

entries in which a "yes" is marked had a match between the attribute value in the

previous operation and the attribute value in the current operation. The weighting

given to each of the attributes is found in parenthesis under the attribute name.

It is important to note the adaptability of this form of reasoning. Any change

in attributes used in performing the kind of reasoning contained in the program can be

easily made. Changes to the weighting given to any of the attributes can be changed

by modifying a single value in the code. The analyst or combat modeler can change

the action of the program by modifying the identity or the weightings given to

attributes of the operation to reflect more accurately the iniluence of operation

attributes affecting the consumption o[supplies.

4. Adjustment Algorithm

After the strongest analogies for each of the categories of supply items have

been determined, an adjustment to the general estimate for each o[the supply items

computed. The adjustment algorithm works this way.

An error percentage is calculated for each of the analogies with respect to the

particular supply item being considered. This is done by taking the difference between

the actual consumption and the general estimate for the supply item and dividing it by

the general estimate. Once this has been done for each of the analogous operations,

these error percentages are weighted by the analogy strengths of the operations from

which they were calculated, and averaged together. The resultant error percentage is

then multiplied by the general estimate for the same supply item in the current logistics

estimate. The result is stored as the adjustment to this general estimate. In computing

the final estimate for the supply item, the adjustment is added to the general estimate.

Adjustments can be be positive, negative, or zero.

There are several ways in which the error percentages of the three strongest

analogies can be averaged. One way is to weight the error percentages equally.

Another way is to place greater weight on the error percentages obtained from more

recently conducted operations. The current weighting strategy places greater weight on

the error percentages of the strongest analogies. Testing of the results of the program

has not been done, but this weighting strategy is expected to yield more accurate

adjustments than other strategies.

5. Output

The program output generated by this function of the program has already

been partially described. The logistics estimate itself is a one page document found in

both Appendix A and Appendix B. The top half of the document contains a summary

of the attributes of the operation. Next, a brief summary of the previous analogous

operations used in the adjustment algorithm is provided. At present, this information

pertains only to the ammunition adjustments. Ammunition adjustments are considered

to be of particular interest since the majority of the estimates which the program

creates are for ammunition supply items. At the bottom of the document is the

logistics estimate for the operation. The document is otherwise self-explanatory.

D. UPDATING RECORDS

This function of the program is critical to the reasoning performed in the creation

of the logistics estimate. After an operation has been conducted, one of the tasks

required of the tactical logistics planner is to collect data on all of the supplies

consumed. Such information is passed up the chain of command to satisfy reporting

requirements, and retained by the unit conducting the operation for future planning

purposes. The record update function of the program automates this task, and stores

the actual consumption data in the same data structure as the original logistics

estimate for that operation for future reference. An example of an interactive session

which queries the user for the actual consumption data and acknowledges the update

of the historical record of that operation is found in Appendix C.

E. DELETING RECORDS

Not all of the operations for which logistics estimates are created will actually be

conducted. In other cases, the actual consumption figures for an operation may be

suspect or otherwise undesireable for use in adjusting future logistics estimates. The

usefulness of retaining such records in secondary storage is questionable. The program

allows the records of such operations to be deleted. An example of an interactive user

session using this function of the program is found in Appendix C.

F. PRINTING A DIRECTORY

This function is useful for the reasons discussed earlier. The information it

provides is all that is necessary to uniquely identify each of the operations, unless more

than one operation with the same mission for the same unit on the same day is created.

25

An additional identifier would then be necessary. Aside from listing all of the

operations residing in secondary storage, this function identifies whether each

operation has been updated or not. If a record has been updated, then the source of

the update information is provided. The sources of update information are factual data

and estimates. An example of the output generated by the print directory function of

the program is found in Appendix C.

G. PRINTING HISTORICAL RECORDS

This function of the program generates one page summaries of all of the

information available on each oC the operations for which it has created a logistics

estimate. Such a summary is invaluable to a logistics planner. It represents a

significant effort in researching historical files and presenting the contents of the files in

a clear and understandable format. This function of the program could be modified to

produce the historical record of a single specified operation, rather than the records of

all operations in the historical files. An example of the historical record of an

operation is found in Appendix C.

26

IV. CONCLUSIONS

A. PROGRAM STRENGTHS

The program takes a different approach to the creation of logistics estimates

from the one currently used by Army logistics planners. It automates the references

and calculations performed by logistics planners in constructing estimates using Army

directed algorithms. The program performs these tasks with significant benefits to the

logistics planner. The program is fast, reliable, and tireless. It automates many of the

other administrative tasks performed by the logistics planner in updating the historical

records of operations and frees the logistics planner to do other things.

In addition to its automation benefits, the program conducts analysis that was

heretofore conducted only by experienced or enterprising logisticians. This analysis

takes the form of reasoning about the similarity between operations, and the evaluation

of existing historical records. This type of reasoning is essential to improving the

accuracy of logistics estimates generated by current estimation techniques. The ability

of the logistics planner to direct the reasoning of his automated aid in revising

estimates is extremely powerful. It allows the logistics planner to instantly respond to

changing conditions in operational planning, and assists the logistics planner in

creating consistent, reasoned estimates even when he/she lacks the requisite personal

experience to conduct such reasoning. Logistics planners outside the Army can also

benefit from such a reasoning facility. Inventor}' managers and production planners

spend considerable time creating and revising estimates. The reasoning contained in

the program could be adapted to assist them.

B. PROGRAM LIMITATIONS

The program does not create estimates for all of the supply items with which the

logistics planner would be concerned. Likewise, it does not accept information on all

of the different types and models of weapons and major end items which are currently

in use in the field. One reason for these obvious limitations is that the program was

designed as a prototype. The program needed to demonstrate function, not

completeness. A serious factor affecting future efforts in the development of

automated logistics planning aids of this type, however, is storage. Principally, the

concern is main memory availability. The template used to create the task force in the

27

program was arbitrarily chosen. It was certainly a very small subset of the total

inventory of weapons and major end items in the Army inventory.

A complete database of all weapons and major end-items in the United States

Army does exist, and is called the Army Master Data File (AMDF). A program using

a database of this size would be most appropriate in a war gaming or simulation

application where memory resources necessary to support such a database would not

be a constraint. If the program is implemented as a microcomputer-based system in

tactical units, then a subset of the AMDF or the use of a task force template like the

one used in the prototype would be appropriate.

An Improvement of the program might allow the user to specify a set of weapons

and major end items from the AMDF as one of the program functions. The resulting

task force template would continue to be used until changed by the user by selecting a

task force template creation function in the program. The overriding concern is that

the task force database and template be tailored to meet the particular needs of the

logistics planner using the program and be supported by the memory resources

available.

Another limitation of the program is the temporary existence of task force

composition data. Ideally, this information would be stored permanently with other

data pertinent to the historical record of an operation. It currently is not. The loss of

this data prohibits future reference to the composition of the task force involved in the

conduct of a particular logistics operation. This limits some of the analysis which can

be performed about an operation. Information on the composition of a task force may

warrant inclusion in the historical record.

Current program design involves reading all of the historical records into main

memory from secondary storage at the beginning of the program and writing them

back into secondary storage at the end of the of the user session. The historical files

take up considerable space when the program has been used to create a large number

of logistics estimates. A more sophisticated data retrieval technique is necessary to

reduce this dependency on main memory. If the historical files of several different

units are stored together or shared in some type of distributed system, the data

retrieval issue becomes even more important.

The decision to use Pascal as the implementation language in the prototype was

made for convenience. Pascal may not be the best choice. Experimentation with

Common Lisp in implementing portions of the program required fewer variables and

28

potentially less storage space than Pascal. In addition, the use of user defined

structures in Common Lisp appeared to make the program easier to read and

understand.

A significant limitation of the program is its rigidity. In particular, the program

does not allow the user to change the value of an attribute in the description of an

operation after a record for that operation has been created and placed into the

historical records. War is unpredictable by nature. There may be times when the value

of certain attributes in the operation description will not be as planned. It is

unrealistic to expect the user of the program to recreate an entire logistics estimate

because of a single change to the operation description.

In a combat simulation or modelling application of this program, the ability to

quickly and easily change the value of attributes in the operation description and

recreate an estimate would be very important. Any anticipated sensitivity analysis

using this program would require this capability.

The estimates for Class II, Class IV, Class VII, Class VIII, and Class IX supplies

are clearly unacceptable for the purposes of the tactical logistics planner. While the

functions of the program worked well in creating estimates which may be superior to

those generated by human planners by calculation methods alone, it is the level of

abstraction at which the estimates were made that is the problem. No one orders such

supplies by the short ton. Each supply item is uniquely identified by a stock number

and ordered individually. There must be a more concerted effort by Army logisticians

to provide planning equations and factors for selected individual supply items in these

categories. The present level of abstraction serves only the needs of the transportation

manager concerned with bulk planning data and the logistician at Army level and

above.

The reasoning performed by the program represents a new approach to logistics

planning and has several potential applications which will be discussed later. There is

the potential however, for becoming overly impressed with the reasoning techniques of

the program and trying to reason about too many factors at once, or about factors

whose influence on supply consumption is uncertain. Some factors may certainly

impact on how a particular operation is conducted, but may not influence the

consumption of supplies in any consistent and meaningful way.

29

C. PROMISE FOR THE FUTURE

The program of this thesis could evolve into a valuable tool for the tactical

logistics planner. Future work needs to he done to validate the approach of this

research. The program offers many potential benefits to the logistics planner. It is fast

and reliable. Much of the time consuming work now being done by humans can be

confidently shifted to a computer. References and calculations are routine,

monotonous, and unexciting aspects of the logistics estimation process. Such tasks are

often performed poorly or in an untimely manner, especially in a high stress

environment such as can be expected during combat operations. The program assists

the logistics planner in the reasoning process as well. For the inexperienced planner,

the built-in reasoning of the program may provide estimate revisions where they might

not otherwise be possible. The experienced logistics planner can structure the

reasoning of the program to reflect more accurately the influence of different operation

attributes on the consumption rate of supplies. Even at the tactical level, sensitivity

analysis can be performed by altering the values of various operation attributes and

creating a new estimate for the revised situation. A final benefit of the program is the

simplicity and speed with which consumption data is recorded. With the aid of the

program, this all-too-often-neglected task may be routinely performed.

The ideas inherent to the creation of an automated logistics planning program

can be used to design computer aided instruction programs for teaching logistics

planners how to create logistics estimates. An explanation facility can be added to

instruct the student as to which refences are made in preparing each of the individual

supply item estimates in accordance with FM 101-10-1. The same instruction program

could check student estimates against its own calculations for test operations and

provide a general equation solutions when the student fails to provide a correct

response.

A computer-aided instruction program might also be used to teach the basics of

reasoning in adjusting logistics estimates. A sample session such as the one detailed in

the appendices of this thesis might provide physical evidence of the influence that

certain operation attributes may have on the consumption of supplies. Coupled with

classroom instruction, such an approach might provide some needed experience to

junior logisticians.

Logistics has been poorly integrated into most Army tactical simulations and war

gaming exercises. Operational planning in these exercises fails to include realistic

30

consideration of logistics requirements. The reason cited most often in explaining this

deficiency is that logistics estimates are too time consuming to create and slow the pace

of the training. Use of an automatedlogistics-planning system like this one might be

able to alleviate this problem to some degree. The program of this thesis clearly

demonstrates that systems can be designed to create logistics estimates in a timely and

responsive manner, and integrated into operational planning. It might be possible to

expand these type of exercises in the future to include the participation of logistics

planners in a meaningful way.

31

APPENDIX A

LOGISTICS ESTIMATE DEMONSTRATION #1

TASK FORCE INPUT

You will now begin building the task force.

enter the number of M2 IMF FIGHTING VEH in
40

enter the number of M3 CAV FIGHTING VEH in
5

enter the number of M113 PERS CARRIER in
19

enter the number of M901 CBT VEH ITV in
5

enter the number of M125A1 SIMM CARR in
9

enter the number of M106A1 107MM CARR in
12

enter the number of M102 105MM HOW in
9

enter the number of M109 155MM SP HOW in
9

enter the number of MHO Sin SP HOW in
9

enter the number of LAUN-LOAD MLRS in

enter the number of M163 VULCAN AIR DEF in

enter the number of M730 CHAP AIR DEF in
3

enter the number of Ml TANK 105MM in
54

enter the number of M6C TANK 105MM in
54

enter the number of TOW LAUNCHER in
26

enter the number of M222 DRAGON LNCHR in
44

enter the number of M2 50 CAL MG in
123

enter the number of M60 MG in
49

enter the number of M16A1 RIFLE in
3000

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

task

force,

force,

force,

force,

force,

force

,

force,

force,

force,

force,

force

force,

force

force

force

force

force

force

force

32

SCENARIO INPUT

The following questions describe the operation for which
the program will create a logistics requirements estimate
All questions must be answered as directed.

Enter the date on which the operation is to commence
Use the form dd/mm/yy

The date of the operation is 24/05/87

Is this the correct date?
Enter the number corresponding to your answer.

1 - yes, date is correct
2 - no, date is incorrect

Enter the name of the unit for which this estimate or
update is being prepared. For example- l/33rd

The name of the unit is 2/77th

Is this the correct unit name?
Enter the number corresponding to your answer.

1 - yes, unit name is correct
2 - no, unit name is incorrect

Enter the number corresponding to the correct tf type
1 - armor
2 - mechanized
3 - infantry

Enter the number corresponding to the correct tf size
1 - battalion
2 - brigade

Enter the number corresponding to the correct mission,
1 - attack
2 - defend

Is this the first day of this mission or is this a
succeeding day of a continuing mission.

Enter the correct number for your response
1 - first day
2 - succeeding day

33

Enter the name of the operation of which this mission
is a part. For example- D-DAY

The name of the operation is Reforger

Is this correct ?

Enter the number corresponding to your answer.
1 - yes, operation name is correct
2 - no, operation name is incorrect

Enter the number corresponding to the correct area.
1 - conus
2 - europe
3 - korea

Enter the name of the country in which this mission
will be conducted. For example- West Germany.
Be sure to capitalize the first letter in each word

The name of the country is West Germany

Is this correct ?

Enter the number corresponding to your answer.
1 - yes, country name is correct
2 - no, country name is incorrect

Enter the number corresponding to the correct climate
1 - hot
2 - temperate
3 - cold

Enter the number corresponding to the correct intensity
1 - high
2 - mid
3 - low

Do you expect the task force to be in MOPP level three
or MOPP level four during this mission.

Enter the correct number for your response
1 - yes
2 - ho

Enter the number corresponding to the correct terrain
1 - open
2 - woods
3 - built up
4 - mountainous

Enter the number corresponding to the visibility
1 - good
2 - fair
3 - pocr

34

Do you plan on significant Air Force ground support?

Enter the correct number for your response
1 - yes
2 - no

Enter the total number of personnel in the task force

Enter the number corresponding to the ration policy
during the duration of this operation.

1 - b_c_b
2 - c c b

35

ANALOGY REASONING

All of the available data on past operations has been
evaluated to identify analogies to the current operation.

A previous operation is considered analogous to the
current operation if the following conditions are satisfied:

1. The historical record of the previous operation has
been updated with actual consumption data.

2. Both operations have the same mission.

3. Both operations took place in the same area of the world.

4. Both operations took place in the same climate.

5. Both operations took place under the same chemical
defense mission oriented protective posture.

6. Both operations involved the same combat intensity.

7. Both operations were first day engagements or
succeeding day engagements or the same mission type.

The following operations are analogous under this definition.

DATE UNIT MISSION AREA CLIMATE MOPP INTENSITY FIRST/SUCCEEDING DAY

01/04/86 2/77-th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

04/04/86 2/77th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

06/04/86 2/77-th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

10/05/86 3/24th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

15/05/86 l/81s-t ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

03/04/87 2/77th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

07/04/87 2/77-th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

22/04/87 2/77th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

05/05/87 3/24-th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

16/05/87 2/77th ATTACK EUROPE TEMPERATE YES HIGH FIRST DAY

36

WATER SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to water supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose

.

DATE UNIT COUNTRY UPDATE
NAME SOURCE

(2) (1)

16/05/87 2/77th YES YES

05/05/87 3/24th NO NO

22/04/87 2/77ih NO YES

07/04/87 2/77th YES NO

03/04/87 2/77-th YES NO

15/05/86 l/81st NO YES

10/05/86 3/24ih YES NO

06/04/86 2/77th NO NO

04/04/86 2/77ih NO YES

01/04/86 2/77th YES NO

37

SUBSISTENCE SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to subsistence consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose

.

DATE UNIT UNIT UPDATE
NAME SOURCE

(1) (1)

16/05/87 2/77-th YES YES

05/05/87 3/24th NO NO

22/04/87 2/77+h YES YES

07/04/87 2/77th YES NO

03/04/87 2/77th YES NO

15/05/86 l/81st NO YES

10/05/86 3/24th NO NO

06/04/86 2/77th YES NO

04/04/86 2/77th YES YES

01/04/36 2/77th YES NO

38

GENERAL SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to general supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (2) = 2 points for AF_GROUMD_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose.

DATE UNIT AF TERRAIN VISIBILITY UNIT COUNTRY OPERATION UPDATE
GRND_SPT NAME NAME NAME SOURCE

(2) (2) (1) (1) (1) (1) (2)

16/05/87 2/77th YES NO NO YES YES NO YES

05/05/87 3/24th NO NO YES NO NO NO NO

22/04/87 2/77-th YES YES YES YES NO YES YES

07/04/87 2/77-th YES NO NO YES YES YES NO

03/04/87 2/77th NO NO NO YES YES YES NO

15/05/86 l/81st YES YES YES NO NO NO YES

10/05/86 3/24-th YES NO YES NO YES NO NO

06/04/86 2/77th NO NO NO YES NO YES NO

04/04/86 2/77-th YES YES YES YES NO YES YES

01/04/86 2/77-th YES NO NO YES YES YES NO

39

FUEL SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to fuel supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (2) = 2 points for AF_GROUMD_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose.

DATE UNIT AF TERRAIN UNIT COUNTRY OPERATION UPDATE
GRND_SPT NAME NAME NAME SOURCE

(2) (3) (1) (1) (1) (2)

16/05/87 2/77-th YES NO YES YES NO YES

05/05/87 3/24 th NO NO NO NO NO NO

22/04/87 2/77th YES YES YES NO YES YES

07/04/87 2/77th YES NO YES YES YES NO

03/C4/87 2/77th NO NO YES YES YES NO

15/05/86 l/81st YES YES NO NO NO YES

10/05/86 3/24th YES NO NO YES NO NO

06/04/86 2/77-th NO NO YES NO YES NO

04/04/86 2/77-th YES YES YES NO YES YES

01/C4/86 2/77th YES NO YES YES YES NO

40

AMMUNITION REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to ammo supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUMD_SUPPORT

The three previous operations with the highest number of
guality points are used in the adjustment algorithm.

DATE UNIT AF
GRND SPT

TERRAIN VISIBILITY UNIT COUNTRY OPERATION UPDATE
NAME NAME NAME SOURCE

(3) (2) (1) (1) (1) (1) (1)

16/05/87 2/77-th YES NO NO YES YES NO YES

05/05/87 3/24th NO NO YES NO NO NO NO

22/04/87 2/77-th YES YES YES YES NO YES YES

07/04/87 2/77-th YES NO NO YES YES YES NO

03/04/87 2/77th NO NO NO YES YES YES NO

15/05/86 l/81s-t YES YES YES NO NO NO YES

10/05/86 3/24-th YES NO YES NO YES NO NO

06/04/86 2/77-th NO NO NO YES NO YES NO

04/04/86 2/77-th YES YES YES YES NO YES YES

01/04/86 2/77th YES NO NO YES YES YES NO

41

TASK FORCE COMPOSITION

The task force has been built. Task force composition is

M2 INF FIGHTING VEH 40
M3 CAV FIGHTING VEH 5

M113 PERS CARRIER 19
M901 CBT VEH ITV 5

M125A1 81HH CARR 9
M106A1 107MM CARR 12
M102 105MM HOW 9
M109 I55MM SP HOW 9
MHO Sin SP HOW 9
LAUN-LOAD MLRS
Ml 63 VULCAN AIR DEF 3
M730 CHAP AIR DEF 3
Ml TANK 105MM 54
M60 TANK 105MM 54
TOW LAUNCHER 26
M222 DRAGON LNCHR 44
M2 50 CAL MG 123
M60 MG 49
M16A1 RIFLE 3000

42

AUTOMATED LOGISTICS PLAN

DATE
UNIT
TASK FORCE TYPE
TASK FORCE SIZE
MISSION
DURATION
COMBAT INTENSITY
OPERATION NAME
AREA
COUNTRY
CLIMATE
TERRAIN
VISIBILTY
AF GROUND SUPPORT
MOPP LEVEL 3/4
PERSONNEL STRENGTH
RATION POLICY

24/05/87
2/77th
ARMOR
BRIGADE
ATTACK
FIRST DAY
HIGH
Reforger
EUROPE
West Germany
TEMPERATE
OPEN
FAIR
YES
YES
3500
c c b

HISTORICAL DATA AVAILABLE YES

DATE
UNIT

22/04/87
2/77th

04/04/86
2/77th

16/05/87
2/77th

LOGISTICS ESTIMATE

SUPPLY ITEM GENERAL EST. ADJUSTMENTS FINAL EST.

water 16170 2556 18726 gallons

B rations 3500 -527 2973 meals

MRE rations 7000 2564 9564 meals

class II supplies 6 1 7 STONS

diesel fuel 69530 8388 78418 gallons

class IV supplies 7 1 8 STONS

tank ammo 105mm 5616 -616 5000 rounds

TOW ammo 182 66 243 rounds

DRAGON ammo 88 -18 70 rounds

Howitzer ammo 105mtn 3384 1137 4521 rounds

Howitzer ammo 155mm 3366 -355 3011 rounds

Howitzer ammo 8 in 2592 520 3112 rounds

Vulcan ammo 20mm 11952 4117 16069 rounds

Mortar ammo 81mm 873 -163 710 rounds

Mortar ammo 107mm 1308 300 1608 rounds

MG ammo .50 caliber 21525 -5600 15925 rounds

MG ammo 7.62mm 21217 -6046 15171 rounds

rifle ammo 5.56mm 297000 3470 300470 rounds

class VII supplies 26 4 30 STONS

class VIII supplies 2 -1 1 STONS

class IX supplies 4 4 8 STONS

43

APPENDIX B

LOGISTICS ESTIMATE DEMONSTRATION #2

TASK FORCE INPUT

You will now begin building the task force.

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

enter

the number
40

the number
5

the number
19

the number
5

the number
9

the number
12

the number
9

the number
9

the number
9

the number

the number
5

the number
3

the number
54

the number
54

the number
26

the number
44

the number
123

the number
49

the number
3000

of M2 INF FIGHTING VEH

of M3 CAV FIGHTING VEH

of M113 PERS CARRIER

of M901 CBT VEH ITV

of M125A1 81MM CARR

of M106A1 107MM CARR

of Ml 02 105MM HOW

of M109 155MM SP HOW

of MHO 8in SP HOW

of LAUN-LOAD MLRS

of M163 VULCAN AIR DEF

of M730 CHAP AIR DEF

of Ml TANK I05MM

of M60 TANK 105MM

of TOW LAUNCHER

of M222 DRAGON LNCHR

of M2 50 CAL MG

of M60 MG

of M16A1 RIFLE

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

in your task force

44

SCENARIO INPUT

The following questions describe the operation for which
the program will create a logistics requirements estimate
All questions must be answered as directed.

Enter the date on which the operation is to commence
Use the form dd/mm/yy

The date of the operation is 03/03/87

Is this the correct date?
Enter the number corresponding to your answer.

1 - yes, date is correct
2 - no, date is incorrect

Enter the name of the unit for which this estimate or
update is being prepared. For example- l/33rd

The name of the unit is 1/llth

Is this the correct unit name?
Enter the number corresponding to your answer.

1 - yes, unit name is correct
2 - no, unit name is incorrect

Enter the number corresponding to the correct tf type
1 - armor
2 - mechanized
3 - infantry

Enter the number corresponding to the correct tf size
1 - battalion
2 - brigade

Enter the number corresponding to the correct mission.
1 - attack
2 - defend

Is this the first day of this mission or is this a
succeeding day of a continuing mission.

Enter the correct number for your response
1 - first day
2 - succeeding day

45

Enter the name of the operation of which this mission
is a part. For example- D-DAY

The name of the operation is Rising Star

Is this correct ?

Enter the number corresponding to your answer.
1 - yes, operation name is correct
2 - no, operation name is incorrect

Enter the number corresponding to the correct area,
1 - conus
2 - europe
3 - korea

Enter the name of the country in which this mission
will be conducted. For example- West Germany.
Be sure to capitalize the first letter in each word

The name of the country is Korea

Is this correct ?

Enter the number corresponding to your answer.
1 - yes, country name is correct
2 - no, country name is incorrect

Enter the number corresponding to the correct climate
1 - hot
2 - temperate
3 - cold

Enter the number corresponding to the correct intensity
1 - high
2 - mid
3 - low

Do you expect the task force to be in MOPP level three
or MOPP level four during this mission.

Enter the correct number for your response
1 - yes
2 - ho

Enter the number corresponding to the correct terrain
1 - open
2 - woods
3 - built up
4 - mountainous

Enter the number corresponding to the visibility
1 - aood
2 - fair
3 - poor

46

Do you plan on significant Air Force ground support?

Enter the correct number for your response
1 - yes
2 - no

Enter the total number of personnel in the task force

Enter the number corresponding to the ration policy
during the duration of this operation.

1 - b_c_b
2 - c c b

47

ANALOGY REASONING

Ail of the available data on past operations has been
evaluated to identify analogies to the current operation.

A previous operation is considered analogous to the
current operation if the following conditions are satisfied:

1. The historical record of the previous operation has
been updated with actual consumption data.

2. Both operations have the same mission.

3. Both operations took place in the same area of the world,

4. Both operations took place in the same climate.

5. Both operations took place under the same chemical
defense mission oriented protective posture.

6. Both operations involved the same combat intensity.

7. Both operations were first day engagements or
succeeding day engagements or the same mission type.

The following operations are analogous under this definition.

DATE UNIT MISSION AREA CLIMATE MOPP INTENSITY FIRST/SUCCEEDING DAY

01/02/86 1/llth DEFEND KOREA COLD YES MID SUCCEEDING DAY

22/02/8o 1/llth DEFEND KOREA COLD YES MID SUCCEEDING DAY

04/03/86 1/11-th DEFEND KOREA COLD YES MID SUCCEEDING DAY

12/01/87 2/22nd DEFEND KOREA COLD YES MID SUCCEEDING DAY

02/02/87 3/33rd DEFEND KOREA COLD YES MID SUCCEEDING DAY

23/02/87 2/22nd DEFEND KOREA COLD YES MID SUCCEEDING DAY

48

WATER SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to water supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of duality points being chosen for this
purpose

.

DATE UNIT COUNTRY UPDATE
NAME SOURCE

(2) (1)

23/02/87 2/22nd YES NO

02/02/37 3/33 rd YES NO

12/01/87 2/2 2nd YES NO

04/03/86 1/llth YES YES

22/02/86 1/11-th YES YES

01/02/86 1/llth YES YES

49

SUBSISTENCE SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to subsistence consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
hiahest number of quality points being chosen for this
purpose

.

.bf tiny

DATE UNIT UNIT UPDATE
NAME SOURCE

(1) (1)

23/02/87 2/22nd NO NO

02/02/37 3/33rd NO NO

12/01/37 2/22nd NO NO

04/03/86 1/llth YES YES

22/02/86 1/llth YES YES

01/02/86 1/llth YES YES

50

GENERAL SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to general supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (2) = 2 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose

.

DATE UNIT AF TERRAIN VISIBILITY UNIT COUNTRY OPERATION UPDATE
GRND_SPT NAME NAME NAME SOURCE

(2) (2) (1) (1) (1) (1) (2)

23/02/87 2/22nd NO YES YES NO YES YES NO

02/02/87 3/33rd NO NO NO NO YES NO NO

12/01/87 2/22nd NO NO NO NO YES YES NO

0<+/03/86 1/llth YES YES YES YES YES NO YES

22/02/86 1/llth YES NO NO YES YES YES YES

01/02/86 1/llth YES YES YES YES YES YES YES

51

FUEL SUPPLY REASONING

The analogous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to fuel supply consumption. Each of the
points* of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (2) = 2 points for AF_GROUND_SUPPORT

Up to three previous operations are considered in the
adjustment algorithm, with those operations with the
highest number of quality points being chosen for this
purpose

.

DATE UNIT AF TERRAIN UNIT COUNTRY OPERATION UPDATE
GRND_SPT NAME NAME NAME SOURCE

(2) (3) (1) (1) (1) (2)

23/02/87 2/22nd NO YES NO YES YES NO

02/02/87 3/33rd NO NO NO YES NO NO

12/01/87 2/ 2 2nd NO NO NO YES YES NO

04/03/86 1/llth YES YES YES YES NO YES

22/02/86 1/11-th YES NO YES YES YES YES

01/02/86 1/llth YES YES YES YES YES YES

52

AMMUNITION REASONING

The analoqous operations are evaluated on the strength
of their similarity to the current operation in those
areas pertinent to ammo supply consumption. Each of the
points of similarity are weighted independently.

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

The three previous operations with the highest number of
quality points are used in the adjustment algorithm.

DATE UNIT AF TERRAIN VISIBILITY UNIT COUNTRY OPERATION UPDATE
GRND_SPT NAME NAME NAME SOURCE

(3) (2) (11 (1) (1) (1) (1)

23/02/87 2/22nd NO YES YES NO YES YES NO

02/02/87 3/33rd NO NO NO NO YES NO NO

12/01/87 2/2 2nd NO NO NO NO YES YES NO

04/03/86 1/llth YES YES YES YES YES NO YES

22/02/86 1/11-th YES NO NO YES YES YES YES

01/02/86 1/llth YES YES YES YES YES YES YES

53

TASK FORCE COMPOSITION

M2 INF FIGHTING VEH 40
M3 CAV FIGHTING VEH 5

M113 ?ERS CARRIER 19
M901 CBT VEH I TV 5

M125A1 SIMM CARR 9
M106A1 107NH CARR 12
M102 105MM HCW 9
Ml 09 155KM SP HOW 9
MHO Sin SP HOW 9
LAUM-LOAD MLRS
M163 VULCAN AIR DEF 5

M7 30 CHAP AIR DEF 3

Ml TANK 105MM 54
M60 TANK 105MM 54
TOW LAUNCHER 26
M222 DRAGON LNCHR 44
M2 50 CAL MG 123
M60 MG 49
M16A1 RIFLE 3000

54

AUTOMATED LOGISTICS PLAN

DATE 03/03/87
UNIT 1/llth
TASK FORCE TYPE ARMOR
TASK FORCE SIZE BRIGADE
MISSION DEFEND
DURATION SUCCEEDING DAY
COMBAT INTENSITY MID
OPERATION NAME Rising Star
AREA KOREA
COUNTRY Korea
CLIMATE COLD
TERRAIN OPEN
VISIBILTY GOOD
AF GROUND SUPPORT YES
MOPP LEVEL 3/4 YES
PERSONNEL STRENGTH 3500
RATION POLICY c_c_b

HISTORICAL DATA AVAILABLE YES

DATE
UNIT

01/02/86
1/llth

04/03/86
1/llth

22/02/86
1/llth

LOGISTICS ESTIMATE

SUPPLY ITEM GENERAL EST. ADJUSTMENTS FINAL EST.

water 12320 2004 14324 gallons

B rations 3500 2187 5687 meals

MRE rations 7000 -2000 5000 meals

class II supplies 6 2 8 STONS

diesel fuel 56257 8990 65247 gallons

class IV supplies 7 -2 5 STONS

tank ammo 105mm 2268 332 2600 rounds

TON ammo 182 18 200 rounds

DRAGON ammo 88 -8 80 rounds

Howitzer ammo 105mtn 2736 64 2800 rounds

Howitzer ammo 155mm 2916 -166 2750 rounds

Howitzer ammo 8in 2115 185 2300 rounds

Vulcan ammo 20mm 8100 1900 10000 rounds

Mortar ammo 81mm 360 -60 300 rounds

Mortar ammo 107mm 540 110 650 rounds

MG ammo .50 caliber 8856 144 9000 rounds

MG ammo 7.62mm 8673 -673 8000 rounds

rifle ammo 5.56mm 120000 -106000 14000 rounds

class VII supplies 26 4 30 STONS

class VIII supplies 2 2 STONS

class IX supplies 4 2 6 STONS

55

APPENDIX C

SAMPLE OUTPUT FROM OTHER PROGRAM FUNCTIONS

UPDATING A RECORD

You will now be asked information about the operation,
for which you have actual consumption data.

Enter name of unit which conducted the operation
For example- l/33rd

The name of the unit was 2/77th

Is this the correct unit name?
Enter the number corresponding to your answer.

1 - yes, unit name is correct
2 - no, unit name is incorrect

Enter the date on which the operation took place
Use the form dd/mm/yy

The date of the operation was 24/05/87

Is this the correct date?
Enter the number corresponding to your answer.

1 - yes, date is correct
2 - no, date is incorrect

Enter the number corresponding to the correct mission,
1 - attack
2 - defend

What was the source of the information for this update

Enter the correct number for your response
1 - estimate
2 - factual information

Enter the actual consumption for each of the supply
items that follow. If no actual consumption figures
are available, enter .

Enter the number of water gallons
20000

Enter the number of B rations meals
3100

Enter the number of MRE rations meals
8100

Enter the number of class II supplies STONS
7

Enter the number of diesel fuel gallons
77700

56

Enter the number of class IV supplies STONS
8

Enter the number of tank ammo 105mm rounds
5117

Enter the number of TOW ammo rounds
247

Enter the number of DRAGON ammo rounds
75

Enter the number of Howitzer ammo 105mm rounds
4600

Enter the number of Howitzer ammo 155mm rounds
3040

Enter the number of Howitzer ammo 8in rounds
2930

Enter the number of Vulcan ammo 20mm rounds
15650

Enter the number of Mortar ammo 81mm rounds
705

Enter the number of Mortar ammo 107mm rounds
1572

Enter the number of MG ammo .50 caliber rounds
1635

Enter the number of MG ammo 7.62mm rounds
16000

Enter the number of rifle ammo 5.56mm rounds
300000

Enter the number of class VII supplies STONS
29

Enter the number of class VIII supplies STONS
1

Enter the number of class IX supplies STONS
9

The record has been updated,

Enter c to continue

57

DELETING A HISTORICAL RECORD

You will now be asked information about the operation
that you want deleted.

Enter name of unit which conducted the operation
For example- l/33rd

The name of the unit was 2/77th

Is this the correct unit name?
Enter the number corresponding to your answer.

1 - yes, unit name is correct
2 - ho, unit name is incorrect

Enter the date on which the operation took place
Use the form dd/mm/yy

The date of the operation was 24/05/87

Is this the correct date?
Enter the number corresponding to your answer.

1 - yes, date is correct
2 - no, date is incorrect

Enter the number corresponding to the correct mission,
1 - attack
2 - defend

The record was found and deleted.

Enter c to continue

58

DIRECTORY

DATE UNIT MISSION UPDATED

01/04/86 2/77th ATTACK YES

04/04/86 2/77th ATTACK YES

06/04/86 2/77th ATTACK YES

10/05/86 3/24th ATTACK YES

15/05/86 l/81st ATTACK YES

03/04/87 2/77th ATTACK YES

07/04/87 2/77th ATTACK YES

22/04/87 2/77th ATTACK YES

05/05/87 3/24th ATTACK YES

16/05/87 2/77th ATTACK YES

24/05/87 2/77th ATTACK YES

Enter c to continue

59

HISTORICAL RECORD

DATE
UNIT
TASK FORCE TYPE
TASK FORCE SIZE
MISSION
DURATION
COMBAT INTENSITY
OPERATION NAME
AREA
COUNTRY
CLIMATE
TERRAIN
VISIBILTY
AF GROUND SUPPORT
MOPP LEVEL 3/4
PERSONNEL STRENGTH
RATION POLICY
UPDATE SOURCE

24/05/87
2/77th
ARMOR
BRIGADE
ATTACK
FIRST DAY
HIGH
Reforger
EUROPE
West Germany
TEMPERATE
OPEN
FAIR
YES
YES
3500
c_c_b
FACTUAL

HISTORICAL DATA AVAILABLE YES

DATE
UNIT

22/04/87
2/77th

04/04/86
2/77th

16/05/87
2/77th

LOGISTICS ESTIMATE

SUPPLY ITEM GENERAL EST. ADJUSTMENTS FINAL EST. ACTUAL CONS

water 16170 2556 18726 20000

B rations 3500 -527 2973 3100

MRE rations 7000 2564 9564 8100

class II supplies 6 1 7 7

diesel fuel 69530 8888 78418 77700

class IV supplies 7 1 8 8

tank amno 105mm 5616 -616 5000 5117

TON ammo 182 66 248 247

DRAGON ammo 88 -18 70 75

Howitzer ammo 105mm 3384 1137 4521 4600

Howitzer ammo 155mm 3366 -355 3011 3040

Hcwitzer ammo 8 in 2592 520 3112 2930

Vulcan ammo 20mm 11952 4117 16069 15650

Mortar ammo 81nm 873 -163 710 705

Mortar ammo 107mm 1308 300 1608 1572

MG ammo .50 caliber 21525 -5600 15925 16350

MG ammo 7.62mm 21217 -6046 15171 16000

rifle ammo 5.56mm 297000 3470 300470 300000

class VII supplies 26 4 30 29

class VIII supplies 2 -1 1 1

class IX supplies 4 4 8 9

60

APPENDIX D
PASCAL PROGRAM

(*$S30000*)
program thesis (input , output)

const
datesize
unitsize
num_supply_i terns

supDly item_namesize
unit_

r
.of_measure_size

maxflies
max_analogies

= 10;
= 21;

= 19;
= 7;
= 20;
= 3;

operation_name_iength= 13;
country_name_lengtn = 14;

*the width of the date field
|*the width of the unit name field *
^number of items of supply for which the
program generates logistics estimates *

I* the width of the supply item name field*
'*the width of the unit of measure field *

|*number of operations in history files *

'*max number of analogies used to adjust
general estimates *

'*width of operation name field
'*width of country name field *

type
unit_of_measure_string = packed array (

char;
supply_item_string

data = record
supDly item
general_estimate
adjustments
final estimate
actual^consumption
unit of_measure

end; (*enci record data*)

consumearray = array (.1

= packed array (

char ;

1 . .unit_of_measure_size.) of

1 . . supply_item_namesize .) of

datestring
units tring
operationstring = packed array
countrystring ' = packed array

= packed array
= packed array

supply_item_string;
integer,
integer
integer
integer
unit_of_measure_s tring

. num_supply_items .) of data;

. 1 . .datesize.) of char;
unitsize.) of char;
operation_name_length.) of char;

. country_name_length.) of char;
attack, defe
conus , europe , Korea
hot , temperate , cold
hi, mid. low) •

bn,bde)

;

armor ,mech, inf)

;

woods , open , built up , mountains)

;

first_day, succeeding day);
none , estimate , factual)

;

.good, fair
,
poor)

;

ration_policy_type = (b_c_b,c_c_b)
;

(*mix of ration types

analogy_data = record

missions
areas
climates
intensities
tf_sizes
tf_types
terrains
durations
update sources
visibilities

analogy_index
date
unit
quaiity_pts

integer; (*index into analogies used
datestring; (*date of analogous operation
unitstring; (*unit name in analogous operation
integer (^measure of analogy strength

end";(*end record analogy_info*)

analogy_array = array (.1 . .max_analogies
.

) of analogy_data;

analogy_record = record
num analogies : integer;
analogies : analogy array

end;(*end record analogy_info*)

61

oprecord = record
date
unit
mission
climate
area
tf_type
tf_size
intensity
moppcondition
personnel_strength
ration_policy
AF_ground_spt
country
terrain
update_source
duration
visibility
operation_name
consumption
update
ahalogy_info

end; (*encf record opreco

historytype = array (.

hist file = file of

datestring;
unitstring;
missions;
climates

;

areas

;

tf_types

;

tf_sizes

;

intensities

;

boolean-
integer;
ration_policy_type

;

boolean;
countrystring;
terrains

;

updace_sources

;

durations •

visibilities

;

ope rat ions t ring

;

consumearray;
boolean;
analogy_record

rd*)

1 . .maxfiles.) of oprecord;
oorecord;

var
history

history_file
file counter
mcduIe_code
finished

historytype; (*array of operations in the history
files

hist_file; (^secondary storage file of oprecords
integer; {^number of records in history file
char; (*user selection of program module
boolean; (*flag to halt program execution

procedure initialize;
var

ok : boolean;
answer : char;

begin
page ;

fihished:= false;
v;riteln('This program

^validation of acceptable user choice
*user response about historical records

is designed to assist the tactical unit').-
writeln(' logistics planner at the battalion and brigade level. 1

);
writeln;writeln;writeln,-

existing historical file of previous');write('Is there an already
writeln(' operations? 1

);
writeln;writeln;
ok:= false;
writein(' Enter the number corresponding to

a file called
no historical

our answer,
hist hist
file ');

'writeim ' 1 - yes, there is
writeln(' 2 - no, there is
repeat

readln(answer)

;

writeln;
writeln(answer) •

file_counter := 0;
if answer = '1' then

begin
ok:= true;
reset(history file, 'hist oprecord a');
while not eof"("history_file) do

begin
file counter := file^counter + 1

;

readXhistory_file ,history(. file_counter .)

)

end;
end

file a');

62

else if answer = '2' then ok:= true
else writeln('You have made an error in input, try again. 1

)

until ok = true;
page

end; (*end procedure initialize*)

procedure module_choice

;

var
ok : boolean; (^validation of acceptable user choice *]

continue_char : char; (*user response to continue with program *,

begin
writeln(' There are ' , file_counter :2

,

' records in the history files.');
writelm 'Under current program parameters, there is storage for ');
writeln(maxfiies-file_counter -.2 ,

' additional records.');
writeln,-
writeln('Additional storage can be obtained by either deleting'
writelm ' already existing records from the history files or by'
writeln(' changing the program parameters.');
writeln,-writeln;
writeln ('Enter c to continue');
repeat

readln(continue_char)
until continue_char = 'c';
page ,-

writeln('The program will perform the following tasks. 1

);
writeln('Enter the number corresponding to the desired function. 1

);
writeln,-
writeln(
writeln;
writelm
writeln(
writeln;
writelnl'
writelm
writeln,
writelm
writeln.
writelm
writeln;
writelm
writeln;
ok:= false;
repeat

readlnfmodule code);
if (moaule_co3e = '1') or (module_code = '2') or

'module_code = '3') or (module_code = '4') or
,module_code = '5') or (module_code = '6 1

) then
begin

ok:= true;
writeln('The module selected was # ' ,module_code)

end
else begin

writeln('you have made an error in input, try aqain.');
writeln

end;
until ok = true

;

page;
end; (

Aend procedure module_choice*)

1 - create a logistics estimate for an operation.
'

)

•

2 - update the historical file of a previous operation 1

);
with user supplied consumption data. 1

);

3 - delete the records pertaining to operations for');
which the user no longer has any use.') ;

4 - print the historical files.');

5 - print the directory. 1

);

6 - quit the program.');
writeln;

63

MODULE LOGISTICS ESTIMATE

procedure log_estimate

;

const
LIN^size = 6
enditem_

t
_name_size = 19

num enditems = 19

the width of the line item number field)
|*the width of the enditem name field *)
*the number of end items modelled in this
program)

type
LINstring = packed array (.1. .LIN^size.) of char

(

enditem_nametype = packed array (. 1 . . enditem_name_size
.

,

enditem = record

of char;

LIN
nomenclature
quantity

LINstring;
enditem_nametype

;

integer
end;(*end record enditem*)

compositiontype = array (. 1 . .num_enditems
.

) of enditem;

var
taskfcrce :compositiontype; (*record containing all the information

about the components of a task force*)
newrecord : oprecord; (*record containing all the information

about an operation *)

procedure build_task_force •

var
i : integer; (*index variable for task force items*)

begin
writeln('You will now begin building the task force.
wr ite In,- write In,- write In;
taskfcrce
taskforce
taskforce
taskforce
taskforcei
taskforce'
taskfcrce^
taskforcei
taskforce'
taskforcei
taskforce'
taskforce'
taskforce
taskforcei
taskforcei
taskforce'
taskforce
taskforce
taskforce'
taskforce'
taskforce
taskforce'
taskfcrce
taskforce 1

taskforce'
taskforce'
taskforce
taskforce'
taskforce
taskforce
taskforce
taskforce
taskforce'
taskforcei
taskforcei
taskforce'

1

,1.
,1.
,2.
,2.
.2.
,3.
,3

.

i Cj •

,4.

,4.
,4.
,5.
,5.
,5.
,6.
,6.

, 5

.

,7.
,7.
,7.
,8.
,8.
,8.
,9.
,9.
,9.
,10
,10
,10
,11
,11
,11
.12
.12
.12

M2 IMF FIGHTING VEH

'

M3 CAV FIGHTING VEH 1

M113 PERS CARRIER

M901 CBT VEH ITV

M125A1 SIMM CARR

M106A1 107MM CARR

).LIN := 'J81750
.nomenclature :=

.quantity := 0;

.LIN := 1 C76335'

.nomenclature :=

.quantity := 0;

.LIN := 1 D12087'

.nomenclature :=

.quantity := 0;

.LIN := i E56S96'

.nomenclature :=

.quantity := 0;

.LIN := i D10726 l

.nomenclature :=

.quantity := 0;

.LIN := 1 D10741'

.nomenclature :=

.quantity := 0;

.LIN := 1 XXXXXX'

;

.nomenclatures 'M102 105MM HOW '

.quantity := 0;
•LIN := 1 K57667'

;

.nomenclatures 'M109 155MM SP HOW ',

.quantity := 0;

.LIN := 1 K56981'

;

.nomenclatures 'MHO 8in SP HOW '
;

.quantity := 0;
.LIN := 'L44894'

;

.nomenclatures 'LAUN-LOAD MLRS '

.quantity s 0;

.LIN s 1 J96694'

;

.nomenclatures 'M163 VULCAN AIR DEF

.quantity s 0;

.LIN s 1 D11668' ;

.nomenclatures 'M730 CHAP AIR DEF

.quantity s 0;

64

taskforce'
taskforcei
taskforce

i

taskforcei
taskforce'
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce-
taskforce'
taskforce

.LIN := 'T13374'

.nomenclature .-
=

.quantity := 0;

.LIN := 1 V13101'

.nomenclature :=

.quantity := ;

.LIN := 'XXXXXX'

.nomenclature :
=

.quantity := 0;

.LIN := 1 XXXXXX 1

.nomenclature :=

.quantity := •

.LIN := i XXXXXX'

.nomenclature :=

.quantity := ;

.LIN := 1 XXXXXX'

.nomenclature :
=

) .quantity := ;

j.LIN := 1 XXXXXX'
) .nomenclature .-

=

) .quantity := •

num enditems do

Ml TANK 105MM

M60 TANK 105MM

TOW LAUNCHER

M222 DRAGON LNCHR

M2 50 CAL MG

M60 MG

M16A1 RIFLE
taskforce(

.

for i:= 1

begin
write('enter the number of ', taskforce(. i.) .nomenclature)

;

writeln(' in your task force.');
readln(taskforce (. i

.
) . quantity) .-

wr ite In (taskforce (. i.) .quantity)
end;

page ;

writeln('the task force has been built, task force composition is');
write In; write In; write In;
for i:= 1 to num_enditems

begin
write (taskforce (.

i

wr ite In (taskforce

(

end
end;(*end procedure buildtaskforce*)

do

.)•

. i

nomenclature,
) .quantity)

);

procedure create_scenario;

procedure readdate;
var

ok : boolean;
newdate : datestring;
answer : char;

begin
ok:= false;
repeat

"writeln('Enter the date on which the operation is to commence.');
writeln(' Use the form dd/mm/yy');
readln(newdate)

;

writeln;
'The date of the operation is ', newdate);

'Is this the correct date?
'

)

•

'Enter the number corresponding to your answer.');
yes

.

- no,

; then

,date:=

date
date

writeln

(

writeln;
writeln

(

writeln

(

writeln

(

writeIn

(

readln(answer)
if answer = '

1

begin
newrecord
ok-.= true

end
until ok = true;
write In; write In; write In

end; (*end procedure readdate*)

.s

is
correct
incorrect

newdate

65

procedure readunit;
const

blanks - '
'

;

var
ok : boolean;
answer : char;
unitname : unitstring;

begin
ok:= false;
repeat

writein(' Enter the name of the unit for which this estimate or ');
writeln('update is being prepared. For example- l/33rd ');
readln(unitname) •

strconcat(unitname , blanks) •

writeln;
writeln('The name of the unit is ', unitname);
writeln ; wr i te In

;

writelnpls this the correct unit name?');
writeln{ ' Enter the number corresponding to your answer.');
writelnt ' 1 - yes, unit name is correct
writeln(' 2 - no, unit name is incorrect
readln(answer)

;

if answer = '
1

' then
begin

newrecord.unit := unitname;
ok:= true

end
until ok = true,-
write In; write In; write In

end; (*end procedure readunit*)

procedure readmission;
var

ok : boolean;
mission_code : char;

begin
writeln('Enter the number corresponding to the correct mission.');
writeln(' 1 - attack
writeln (

' 2 - defend
ok:= false;
repeat

readln(mission_code)

;

if mission_code = '1' then
begin

newrecord. mission := attack;
ok.-= true

end
else if mission_code = '2' then

begin
newrecord. missions defend;
ok:= true

end
else writeln('you have made an error in input, try again.');

until ok = true;
write In; write In; write In

end; (*end procedure readmission*)

procedure readclimate,-
var

ck : boolean;
climate_code : char;

begin
writeln(' Enter the number corresponding to the correct climate.')
writeln(' 1 - hot '

)

;

writelm' 2 - temperate
writeln; ' 3 - cold

66

ok:= false;
repeat

readln(climate_code)

;

if climate_code = '
1

' then
begin

newrecord. climate := hot;
ok:= true

end
else if climate_code = '2' then

begin
newrecord. climate := temperate

;

ok:= true
end

else if climate_code = '3' then
begin

newrecord. climate := cold;
ok:= true

end
else writeln('you have made an error in input, try again.');

until ok = true

;

write In .-write In; write In
end; (*er.d procedure readclimate*)

procedure readarea;
var

ok : boolean;
area_code : char;

begin
writeln('Enter the number corresponding to the correct area. 1

);
writelni ' 1 - conus '

N

writeln(' 2 - europe '

writein(' 3 - korea '

ok.-= false;
repeat

readln(area_code)

;

if area^code = '
1

' then
begin

newrecord. area := conus

;

ok:= true
end

else if area_code = '2' then
begin

newrecord. area := europe;
ok:= true

end
else if area_code = '3' then

begin
newrecord. area := korea;
ok:= true

end
else writeln('you have made an error in input, try again. 1

);
until ok = true;
write In; write In; write In

end; (*end procedure readarea*)

procedure readtftype;
var

ok : boolean;
tftype_code : char;

begin
writeln('Enter the number corresponding to the correct tf type. 1

);
writeln(' 1 - armor '

'

mechanized '

infantry '

writeln(' 2
writeln(' 3
ok:= false;
repeat

readln(tftype_code)

;

67

if tftype_code = '
1

' then
begin

hewrecord. tf_type := armor;
ok:= true

end
else if tftype_code = '2' then

begin
hewrecord. tf_type := mech;
ok.-= true

end
else if tftype_code = '3' then

begin
newrecord. tf_type := inf;
ok:= true

end
else writeln('you have made an error in input, try again.');

until ok = true;
write in .-write In; write In

end; (^end procedure readtftype*)

procedure readtfsize;
var

ck : boolean;
tfsize_code : char;

begin
writelnf ' Enter the number corresponding to the correct tf size. 1

);
writelm ' 1 - battalion
writeln(' 2 - brigade
ok:= false;
repeat

readln(tfsize_code)

;

if tfsize_code = '1' then
begin

newrecord. tf_size -.= bn;
ok:= true

end
else if tfsize_code = '2' then

begin
newrecord. tf_size := bde

;

ok:= true
end

else writeln('you have made an error in input, try again.');
until ok = true;
write In; write In; write In

end; (*end procedure readtfsize*)

procedure readintensity;
var

ok : boolean;
intensity_code : char;

begin
writeln(' Enter the number corresponding to the correct intensity 1

)

writelm ' 1 - hiah '

'

writeln(' 2 - mid '

writeln(' 3 - low '

ok:= false;
repeat

readln(intensitvcode)

;

if intensity_coce = '

1
' then

begin
newrecord. intensity := hi;
ok:= true

end
else if intensity_code = '2' then

begin
newrecord. intensity := mid;
ok:= true

68

end
else if intensity_code = '3' then

begin
newrecord. intensity := low;
ok:= true

end
else writeln(

'

you have made an error in input, try again. 1

);
until ok = true;
write In .-write In; write In

end; (*ena procedure readintensity*)

procedure readmopp;
var

ok : boolean;
answer : char;

begin
writeln('Do you expect the task force to be in MOPP level three 1

);
writeln('or MOPP level four during this mission.');
writeln;
writeln(' Enter the correct number for your response 1

);
writelm ' 1 - yes

')
,-

writeln(' 2 - no '

ok-.= false;
repeat

readln(answer)

;

if answer = '
1

' then
begin

newrecord. moppcondition:= true

;

ck:= true
end

else if answer = '2' then
begin

newrecord. moppcondition := false

;

ok:= true
end

else writeln('You have made an error in input, try again. 1

);
until ok = true;
write In; write In; write In

end; (*end procedure readmopp*)

procedure readpersonnel;
const

maxpersonnel = 10000;
var

ok : boolean;
numpersonnel : integer;

begin
ok:= false;
repeat

writeln('Enter the total number of personnel in the task force.');
readln(numpersonnel) .•

if (numpersonnel > 0) and (numpersonnel < maxpersonnel) then
begin

newrecord.personnel_strength:= numpersonnel;
ok:= true

end
else begin

write('The number of personnel exceeds program parameters. 1

)

writeln(' Input the number again. 1

)

end
until ok = true;
write In .-write In; write In

end; (*end procedure readpersonnel*)

69

procedure readterrain,-
var

ok : boolean;
terrain_code : char;

begin
Enter the number corresponding to the correct terrain');

1 - open '

'

2 - woods '

3 - built up '

)

;

4 - mountainous '

)

;

writeln
writeln
writeln
writeln
writeln
ok:= false;
repeat

readln(terrain_code)

;

if terrain_code = '1' then
begin

newrecord. terrains open;
ok:= true

end
else if terrain_code = '2' then

begin
newrecord. terrain := woods;
ok:= true

end
else if terrain_code = '3' then

begin
newrecord. terrains built_up;
ok:= true

end
else if terrain_code = '4' then

begin
newrecord. terrain := mountains

;

ok:= true
end

else writeln('you have made an error in input, try again.');
until ok = true;
write In .-write In; write In

end; (*end procedure readterrain*)

procedure readvisibility;
var

ok : boolean;
visibiiity_code : char;

begin
writeln(' Enter the number corresponding to the visibility 1

);
writelm ' 1 - good '

'

writelm ' 2 - fair '

writeln (
' 3 - poor '

ok:= false;
repeat

readln(visibilitvcode)

;

if visibility_code = '1' then
begin

newrecord. visibility := good;
ok:= true

end
else if visibility_code = '2' then

begin
newrecord. visibility := fair;
ok:= true

end
else if visibility_code = '3' then

begin
nev/record. visibility := poor;
ok:= true

end
else writeln('you have made an error in input, try again.')

until ok = true;
write In,- write In; write In

70

end; (*end procedure readvisibility*)

procedure readAF_ground_spt

;

var
ok : boolean;
answer : char;

begin
writeln('Do you plan on significant Air Force ground support?');
writeln;
writeln('Enter the correct number for your response 1

);
writeim ' 1 - yes

'

writeln(' 2 - no
ok:= false;
repeat

readln(answer)

;

if answer = '

1
' then

begin
newrecord.AF_ground_spt := true

;

ok:= true
end

else if answer = '2' then
begin

newrecord. AF_ground_spt := false

;

ok:= true
end

else writeln('You have made an error in input, try again. 1

);
until ok = true;
write In; write In; write In

end; (*end procedure readAF_ground_spt*)

procedure readduration;
var

ok : boolean;
answer : char;

begin
writeln('Is this the first day of this mission or is this a');
writeln(' succeeding day of a continuing mission.');
writeln;
writeln(' Enter the correct number for your response 1

);
writeim ' 1 - first day');
writeln(' 2 - succeeding day '

)

;

ok:= false;
repeat

readln(answer)

;

if answer = '
1

' then
begin

nev/record. durations first_day;
ok:= true

end
else if answer = '2' then

begin
newrecord. duration := succeeding_day;
ok-.= true

end
else writeln('You have made an error in input, try again.');

until ok = true;
write In.-write In; write In

end; (^end procedure readduration*)

procedure readoperation_name

;

const
blanks = ' •

var
ok : boolean;
ansv;er : char;

71

operation_name : operationstring;
begin

ok:= false;
repeat

writelnf ' Enter the name of the operation of which this mission
writeln('is a part. For example- D-DAY ');
readln(operation^.name) ;

strconcat (operation_name , blanks)

;

writeln;
writeln('The name of the operation is ', operation_name)

;

writeln ;writeln;
writelnf 1 Is this correct ?');
writelnf 'Enter the number corresponding to your answer. 1

);
writelnf' 1 - yes, operation name is correct

,x

writelnf' 2 - no, operation name is incorrect
readln(answer)

;

if answer = '

1
' then

begin
newrecord.operation_name := operation_name

;

ok: = true
end

until ok = true,-
write In; write In; write In

end; (*end procedure readoperation_name*)

);

procedure readccuntry_name

;

const
blanks = '

'

;

var
ok
answer
country_name

begin

boolean;
char ;

countrystring;

ok:= false
repeat

writelnf
writelnf
writelnf

the country in which this mission '

)

;

For example- West Germany. 1

);
first letter in each word');

country_name)

;

Enter the name of
will be conducted
Be sure to capitalize the

readin(country_name) ,•

strconcat(couhtry_name , blanks) •

writeln;
writein('The name of the country is
write In,- writeln ;

writelnf 'Is this correct ?');
writelnf ' Enter the number corresponding to your answer.'
writelnf 1

1 - yes, country name is correct '*

writelnf, ' 2 - no, country name is incorrect
readln(answer)

;

if answer = '
1

' then
begin

newrecord. country := country_name

;

ok.-= true
end

until ok = true,-
write In .-write In; writeln

end; (*end procedure readcountry_name*)

);

procedure readrationpolicy;
var

boolean,-
char ;

ok
answer

begin
writeln
writeln

Enter the number corresponding to the ration policy 1

)

during the duration of this operation.');
writeln-writeln;
writelnf' 1 - b_c_b
writelnf ' 2 - c c b

72

ok:= false;
repeat

readln(answer)

;

if answer = '

1
' then

begin
newrecord. ration_policy := b_c_b;
ok:= true

end
else if answer = '2' then

begin
newrecord. ration_policy:= c_c_b;
ok:= true

end
else writeln('You have made an error in input, try again.');

until ok = true;
write In

end; (*end procedure readrationpolicy*)

procedure buildconsarray;
var

i : integer; (*loop control variable*)
begin

newrecord. consumptions .j.

nev;record. consumptions .1
newrecord. consumption (.2
newrecord. consumption^ .2
newrecord. consumption; .3
newrecord. consumption

. supply^item := 'water

supply.
.un: of^measure := 'gallons';

Ty Item := 'B rations
.unit ot^measure := 'meals '

;

.supply Item .-= 'HRE rations

.unit of^measure := 'meals ';

newrecord. consumptions .4.). supply Item := 'class II supplies
newrecord. consumptions .4.) .unit of^measure :=

' STONS '

;

newrecord. consumption! . 5 .). supply Item := 'diesel fuel
newrecord. consumption! . 5 .) .unit of^measure := 'gallons';
newrecord. consumption! .6.). supply Item := 'class IV supplies
newrecord. consumptions .6 .) .unit of^measure := 'STONS ' ,•

newrecord. consumptions' .7 .) .supply Item := 'tank ammo 105mm
.unit of^measure := 'rounds ';

.supply Item := 'TOW ammo

.unit of^measure := 'rounds ';

.supply Item := 'DRAGON ammo

.unit of* measure := 'rounds '•

newrecord. consumption
newrecord. consumption
newrecord. consumption
newrecord. consumption
newrecord. consumption
newrecord. consumption
newrecord. consumption^ . 10
newrecord. consumptions' .11
newrecord. consumptions' .11
newrecord. consumptions . 12
newrecord. consumption (.12
newrecord. consumptions . 13
newrecord. consumptions .13
newrecord. consumptions' . 14
newrecord. consumptions' .14
newrecord. consumptions' .15
newrecord. consumptions . 15
newrecord. consumptions .16
newrecord. consumptions .16
newrecord. consumptions .17
newrecord. consumptions .17
newrecord. consumptions' .1
newrecord. consumptions .18
newrecord. consumption! .19
newrecord. consumptions .19
newrecord. consumptions .20
newrecord. consumptions' .20
newrecord. consumptions .21
newrecord. consumption; .21

3,

9

9,
.

10.). supply item := 'Howitzer ammo 105mm
.unit of^measure := 'rounds
.supply Item := 'Howitzer ammo 155mm
.unit of^measure := 'rounds ';

. supply__Item -.= 'Howitzer ammo 8in

.unit of^measure := 'rounds ';

.supply Item := 'Vulcan ammo 20mm

.unit of^measure := 'rounds ';

.supply Item := 'Mortar ammo 81mm

.unit of^measure := 'rounds ';

. supply__Item := 'Mortar ammo 107mm

.unit otTmeasure := 'rounds ';

.supply Item := 'MG ammo .50 caliber

.unit of^measure := 'rounds ';

.supply Item := 'MG ammo 7.62mm

.unit of^measure := 'rounds ';

.supply Item := 'rifle ammo 5.56mm

.unit of^measure := 'rounds ';

.supply Item := 'class VII supplies

.unit of^measure := 'STONS '

;

.supplv Item := 'class VIII supplies

.unit cf^measure := 'STONS ';

.supply Item := 'class IX supplies

.unit oT measure := 'STONS
for i:= 1 to num_suppiy items do

newrecord. consumption"" .i.) .actual_consumption :=
end; (*end procedure buildconsarray*)

73

begin (*begin of create scenario*)
page

;

v;riteln(' The following questions describe the operation for which ')•
writeim'the program will create a logistics requirements estimate. 1

)

writeln(' All questions must be answered as directed.');
write In; write In,-write in;
readdate

;

readunit

;

readtftype ,-

readtfsize

;

readnnission;
readduration,-
readcperation_name

;

readarea,-
readcountry_name ,-

readclimate

;

readintensity

;

readriopp;
readterrain,-
readvisibility

;

readAF_ground_spt

;

readpersonnel
{

-

read'rationpolicy ;

buiidconsarray

;

newrecord.update_source := none

;

newrecord. update := false,-
end^^end procedure create_scenario*)

procedure create_estimate

;

var
i : integer; (*index variable for input into consarray*)

procedure water_estimate

;

var
drinking_requirements : real
heat_treatment : real
personal_hygiene : real
food_preparation : real

begin
case newrecord. climate of

hot : begin
if newrecord. moppcondition = true then

drinking_requirements := 3.5
else drinking_requirements := 3.0;
heat_treatment := 0.2;
personal_hygiene := 0.7;
if newrecord. raticnjpolicy = b_c_b then

food_preparation := 1.0
else food_preparation:= 0.5

end;
temperate : begin

if newrecord. moppcondition = true then
drinking_requirements := 3.0

else drinking_requirements := 1.5;
heat_treatment := 0.0;
personal_hygiene := 0.7;
if newrecord. ration_policv = b_c_b then

food_preparation:= 1.0*

else fooa_preparation:= 0.5
end;

cold : begin
if newrecord. moppcondition = true then

drinking_requirements := 2.0
else drinking_requirements := 2.0;
heat_treatment -.= 0.0;
personal_hygiene := 0.7;
if newrecord. ration_policy = b_c_b then

74

food_preparation:= 1.0
else food_preparation:= 0.5

end
end; (*end case statement*)
newrecord.consumption(. 1

.
)

.
general_estimate :=

round((drinking_requirements + heat_treatment + personal hygiene +
food_preparation)* 1.10 * newrecord. personnel_strengtn)

end; (*end procedure water_estimate*)

Erocedure class_I_estimate

;

egin
if newrecord. ration_policy = b_c_b then

begin
newrecord. consumption (.2.) ,general_estimate :=

(newrecord. personnel_strength * 2);
newrecord.consumption(.3.) .general_estimate :=

newrecord.personnel_strength
end

else
begin

newrecord.consumption(.3 .) .general_estimate :=

newrecord. personnel strength * 2;
newrecord. consumption(~- 2.) ,general_estimate :

=
newre cord. per sonne l_strength

end
end; (*end procedure class_I_estimate*)

procedure compute_general_supplies (consumption_array_index: integer
consumption_factor :real);

begin
newrecord. cons umption (.consumption array_index.) .general estimate :

=

round((newrecord. personnel_strengtK * consumption_factorJ / 2000)
end; (*end procedure compute_general_supplies*)

procedure diesel_fuel estimate;
(^general formula used* = for each weapon , take the sum of the following

weapons * #hrs_idle * consumption_idle +
weapons * #hrs_xcntry * consumption_xcntry +
weapons * #hrs_2ndrds * consumption_2ndrds.

Then sum all of these for total diesel fuel required.
Note: the fuel estimate for 105mm towed howitzer is for a M35 vehicle

operating 24 hours *)

begin
case newrecord. area of

korea : newrecord. consumption(. 5
.
) .general_estimate :=

round(taskforce(. 1 .) .quantity * 3.0 * 6.4 +
taskforce(. 1 .) .quantity * 5.5 * 13.0 +
taskforce(.1 .) .quantity * 5.5 * 8.6 +
taskforce(. 2 .) .quantity * 3.0 * 6.4 +
taskforce(.2.) .quantity * 5.5 * 1S.0 +
taskforce(. 2 .) .quantity * 5 . 5 * 3.6 +
taskforce(.3 .) .quantity * 3.1 * 1.0 +
taskforce(.3 .) .quantity * 5.5 * 8.6 +
taskforce(.3 .) .quantity * 5.5 * 10.3 +
taskforce(.4.) .quantity * 3.0 * 1.0 +
taskforce(.4.) .quantity * 5.5 * 8.6 +
taskforce(.4.) .quantity * 5.5 * 8.9 +
taskforcec . 5 .) .quantity * 4.1 * 1.0 +
taskforce(. 5.) .quantity * 5.0 * 8.6 +
taskforcej .5. j .quantity * 5.0 * 10.3 +
taskforce{ .6. } .quantity * 4.1 * 1.0 +
taskforcef .6. j .quantity * 5.0 * 10.0 +
taskforce(.6. } .quantity * 5.0 * 13.3 +
taskforce(.7 .) .quantity *24.0 * 0.2 +
taskforce(.8.) .quantity * 4.1 * 1.0 +

75

taskforce
taskforce
taskforce
taskforce*
taskforcei
taskforce
taskforce
taskforce'
taskforce
taskforcei
taskforce*
taskforce'
taskforce'
taskforce'
taskforce'
taskforce'
taskforce
taskforce'
taskforce'
taskforce

europe : newrecord.consumpt:
round(taskforce(

.

taskforce'
taskforce
taskforce
taskforce 1

taskforce
taskforce
taskforce
taskforce
taskforce
taskforce'
taskforce
taskforce'
taskforcei
taskforce
taskforce'
taskforce'
taskforce 1

taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce
taskforce'
taskforcei
taskforcei
taskforce'
taskforce-
taskforce-
taskforce'
taskforce
taskforce
taskforce'

conus : newrecord.consumpt:
round; taskforce (

.

taskforce
taskforce
taskforce-
taskforce'
taskforce 1

taskforce'
taskforce'

11.8
16.1
1

12
14
1,

6
8
1

5

.quantity

. quantity

.quantity

.quantity

.quantity
) ."quantity
) .quantity
) .quantity
) .quantity
) .quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity

5
.

)
.
genera l_estimate :=

c

5

3

2
9

2
* 13.0
* 0.5
* 1.3
* 2.6
* 10.8
* 56.6
* 44.7
* 2.0
* 28.1
* 35.7

quantity *

) ^ quantity
) .quantity
) .quantity
) .quantity
) .quantity
) .quantity
) .quantity
) .quantity
) .quantity
) .quantity
)

.
quantity
.quantity
.quantity
. quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
.quantity
quantity
quantity

3.0
5

5
3

5

5

3

5

5

3

5

5

4
5

5

4
5

5
*24.0
* 4.0

6

5

4
6
5

5

5

4
4
5

5

4
6

5

5
6

5

4
6
4

5

5

5

5

5

5

5

5

* 100*1
* 10
* 13
*
k
*

6.4 +
18.0 +
8.6
6.4

18.0
8.6
1

3
10
1

a
8
1

1

11
16
1

12
14
1

6
8
i

5

13

1

2
10.8
56 .

6

44.7
2.0

28.1
35.7

5.)".general_estimate :
=

quantity * 3.0 * 6.4 +
* 5.5 *
* S K *
*

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
T
+
+
+
+
+
+
+
+
+
+
+

);

.quantity

.quantity

.quantity

.quantity

.quantity

.quantity

.quantity

6

13

7.0
6 .

8

76

taskforce(.3.) .quantity * 1.9 k 10.3 +
taskforce(.4. .quantity * 3.0 k 1.0 +
taskforce* .4. .quantity * 5.5 k 8.6 +
taskforce* .4.) .quantity k 5.5 k 8.9 +
taskforce(.5. .quantity k 5.0 k 1.0 +
taskforce* .5. .quantity k 3.3 k 8.6 +
taskforce! .5. .quantity * 1.6 k 10.3 +
taskforce(.6.) .quantity * 5.3 k 1.0 +
taskforce< .6.) .quantity * 3.1 k 10.0 +
taskforce* .6.) .quantity * 4.3 k 13.3 +
taskforce* .7.) .quantity *24.0 k 0.2 +
taskforce(.8.) .quantity k 6.2 k 1.0 +
taskforce* .8.) .quantity k 1.9 k 11.8 +
taskforcet .8.) .quantity k 2.9 k 16.1 +
taskforce(.9. .quantity k 4.1 k 1.6 +
taskforce* .9. .quantity k 1.9 k 12.5 +
taskforce(.9.) .quantity

) .quantity
k 4.1 k 14.3 +

taskforce* .10. k 5.0 k 1.0 +
taskforce* .10.) .quantity k 4.0 k 6.2 +
taskforce* .10.) .quantity k 4.5 k 8.9 +
taskforce(.11.) .quantity k 2.4 k 1.0 +
taskforce(.11.) .quantity k 7.2 k 5.2 +
taskforce* .11.) .quantity k 4.8 k 13.0 +
taskforce* .12.) .quantity k 4.0 k 0.5 +
taskforce' .12.) .quantity k 6.0 k 1.3 +
taskforce* .12.) .quantity k 5.5 k 2.6 +
taskforce* .13.) .quantity k 5.2 k 10.8 +
taskforce* .13.) .quantity k 3.3 k 56.6 +
taskforce* .13.) .quantity k 3.4 k 44.7 +
taskforce! .14.) .quantity k 4.2 k 2.0 +
taskforce* .14.) .quantity k 8.5 k 28.1 +
taskforce*;.i4.) .quantity k 2.9 k 35.7)

end:
end; (*

(*end case statement*)
end procedure diesel_fuel._estimate*)

>rocedure compute_ammo (cons_num , num_weapons , ha , hd, ma , md , la , Id : integer)

;

>egin
case newrecord. intensity of

hi :case newrecord. mission of
attack : newrecord. consumption(.cons_num

mid

num weapons ha;
defend : newrecord.. consumption^ .cons num.

num.weapons * hd ;

end;
case newrecord. mission of

attack : newrecord. consumption(.cons_num.
num weapons ma

;

defend : newrecord. consumption(.cons_num.

end;
num_weapons * md;

low :case newrecord. mission of
attack : newrecord. consumption(.cons_num,

num_weapons * la;
defend : newrecorcf. consumption (.cons_num

end
num_weapcns Id;

end (*end case statement*)
end; (*end procedure compute_ammo*)

. general_estimate

. general_estimate

. general_estimate

.general_estimate

.general_estimate

.general_estimate

procedure adjust_estimate

;

const
max_candidates = 10;

type
candidate_mfo = record

index_num : integer;
strength_pts : integer;

(*max number of candidate analogies

*index into history array of records
^measure of analogy strength

77

used : boolean (*used in adjustment analogy selection
end;(*end record candidate_info*)

candidates = array (.1 . .max_candidates
.

) of candidate_info;

var
i,
ad j us tment_index

,

num_candidates

,

index
analogy_candidate

/loop control var into analogies
/loop control var into consumption
'^number of analogous records

integer; (*index into the history files
candidates; (/candidate records for adjustment

function analogous (index: integer)
begin

with history (.index.) do
begin

if (update
(moppcondition
(mission
(intensity
(climate
(area
(duration

else analogous := false;
end

end; (*end function analogous*)

boolean;

= true) and
= newrecord. moppcondition) and
= newrecord. mission) and
= newrecord. intensity) and
= newrecord. climate) and
= newrecord. area) and
= newrecord. duration) then analogous := true

^*sum of errors in analogies used
^sum qlty pts in analogies used
'*loop control variable

procedure adjust (i: integer);
var

sum_error : real;
sum^qualityots .- real;
ana±ogy_couRt : integer;

begin
sum_error:= 0;
sum_quality_pts :=0 •

for analogy_count := 1 to newrecord. analogy_info.num_analogies do
if history (.newrecord. analogy_info . analogies (. analogy_count .)

.

analogy_index.) .consumption(. i.) .general_estimate > then
begin

sum_quality_pts := sum_quality_pts +
newrecord. analogy_info. analogies (.analogy_count.) .quality_pts

;

sum_error:= sum_error +
(newrecord. analogy_info . analogies (. analogy_count

.
)

.
qualitvpts

*((history (.newrecord. analogy_mfo . analogies (. analogy_count7)

.

analogy_index.) .consumption(. i.) .actual consumption -

history (. newrecord. analogy_^info . analogies (~. analogy_count
.

)

.

analogy_index.) . consumption(. i.)
.
general_estimate) /

history (. nev/record. analogy^info. analogies (. analogy_count .)

.

analbgy_index.) .consump*t"ion(. i.) .general_estima*te)

)

end;
newrecord. consumption (. i.) .adjustments :=

round (newrecord. consumption(.i.) .general_estimate *

(sum error / sum quality_ptsj

)

end; (*end proce3ure adjust^T

function compute_strength(af , vis , ter , update , entry , unit , opname , af_wt

,

vis_wt , ter^wt , upda te_wt , cntry_wt , unit_wt

,

opname_wt, Index : integer) :integer;
var

total_pts : integer;
begin

total_pts:= 0;
if (unit = 1) and (newrecord. unit = history(.index.) .unit)

then total ots:= total_pts + unit_wt;
if (update = 1) and (history(. index.) .update_source = factual)

then total_pts:= total_pts + update_wt;

(*total number of strength points

78

if (entry = 1) and (newrecord. country = history(. index.) .country)
then total_pts:= total ots + entry wt;

if (ter = 1) and (newrecord. terrain = Tiistory(. index.). terrain)
then total_jpts:= total_pts + ter_wt;

if (opname = 1) and (newrecord. operation_name = history (. index.

)

. operation_name) then total_pts:= total_pts + opname wt;
if (at = 1) and (newrecord. AF_ground_spt = history (. index.

)

.AF_ground_spt) then total_pts:= total_jpts + af_wt;
if (vis = 1) and (newrecord. visibility = history(. index.) .visibility)

then total_pts:= total_pts + vis_wt;
compute_strength:= total_pts

end;(*end function compute_strength*)

function pick_best_analogy : integer

;

var
strongest_analogy

,

(*index of strongest analogy *]

analogy_candidate_num, (*index into analogy candidate array *,

j, (*loop control variable *,

max_strength : integer; (*maximium analogy strength *,

begin
strongest_analogy := 0;
max_strength:= -1;
for j := 1 to num_candidates do

begin
if (analcgy_candidate(

.
j

.
) .used = false) and

(analogy_candidate(o
.

) .strength_pts > max_strength) then
begin

max_strength := analogy_candidate(
.
j .) .strength_pts;

strongest_analogy := analogy_candidate(.3 .
) . index_num;

analogy_candidate_num:= j
end;

end;
analogy_candidate(.analogy_candidate_num.) .used:= true

;

pick_best_analogy := strongest analogy;
end;(*end function pick_best_analogy*)

procedure print_analogies

;

var
i .- integer; (*loop control variable *)

begin
page

;

writeln;writeln;v;riteln;writeln;
writeln(' ANALOGY REASONING')

;

write In; write In; write In j write In; writeln

;

writelnf'All of the available data on past operations has been ');
writeln(' evaluated to identify analogies to the current operation. 1

);
writeln;
writeln('A previous operation is considered analogous to the

')

;

v;rite(' current operation if the following conditions are ');
writeln(' satisfied:

')

;

writeln;
writeln(' 1. The historical record of the previous operation has');
v/riteln(' been updated with actual consumption data. 1

);
writeln;
writeln(' 2. Both operations have the same mission. 1

);
writeln;
write (' 3. Both operations took place in the same area ');
writeln('of the world.');
writeln;
writeln(' 4. Both operations took place in the same climate. 1

);
writeln;
writeln(' 5. Both operations took place under the same chemical');
writeln(' defense mission oriented protective posture. 1

);
writeln;
writeln(" 6. Both operations involved the same combat intensity.');
writeln;

79

writeln(' 7. Both operations were first day engagements or 1

);
writeln(' succeeding day engagements of the same mission type
write In,-write In; write In,-write In,-write In;
write('The following operations are analogous under this ');
writeln(' definition. '

) ,-

,- write In; write In;

);

writein;
write (

'

write In ('

write (' DATE UNIT MISSION AREA
writein (

' INTENSITY FIRST/SUCCEEDING DAY')

;

rrite(
'

)

CLIMATE MOPP);

writeln('
writein;
if num_candidates > then

begin
for i:= 1 to file_counter do

if analogous (i) then
begin

wr ite(his t o ry (. i.) .date .

'

write (his to ry(. i.) .unit) •

case history(. i.) .mission of
attack : write(' ATTACK
defend : write(' DEFEND

end;
case history(.

i

conus
europe
korea

);

);

area of
write ('CONUS '

write ('EUROPE
write ('KOREA '

end; (*end case statement*)
case histcry(. i.) .climate of

hot : write ('HOT ');
temperate : write ('TEMPERATE ');
cold : write(' COLD '

)

end;(*end case statement*)
if history(. i.) .moppcondition = true then

writeC'YES f
)

else write ('NO ')

;

case history(. i.). intensity of
hi : write ('HIGH
mid : write ('MID
low : write ('LOW

end; (*end case statement*)
case history(. i.) .duration of

FIRST DAY')

;

SUCCEEDING DAY');

first_day : writelm
succeeding_day : writelni

end,-(*end case statement*)
writein

end
end

else begin
" writeln;writeln,-writeln.-
write ('There are no analogous operations in the history '

)

•

writeln('in the history files.')
end;

:nd; (*end procedure print_analogies*)

procedure print_water_reasoning;
var

i : integer;
begin

page ;

writein;

(*loop control variable

?r ite In; write In; write In,-

writeln(' WATER SUPPLY REASONING');
v;r it sin,- write In,- write In; write In,- writein ;

writeln('The analogous operations are evaluated on the strength
writelm'of their similarity to the current operation in those'
writelm ' areas pertinent to water supply consumption. Each of t

wnteln('points of similarity are weighted independently.'),-
he ') ;

80

writeln;
writeln

'

writeln
writeln;
writeln
writeln
writeln
writeln

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

'

)

Up to three previous operations are considered in the '

adjustment algorithm, with those operations with the ')

highest number of quality points being chosen for this
purpose .

'
)

;

wr ite in; write In; write In; write In,-write In,

•

writeln!

'

DATE UNIT COUNTRY UPDATE
NAME SOURCE

)

(2)

writeln
writeln
writeln
v/riteln
writeln
writeln

.

writeln,-writeln;
for i:= 1 to num_candidates do

begin
write (history! .analogy_candidate
write (history! .analogy_candidate
if history (.analogy_candidate(. i,

newrecord. country then write(
else write! 'NO ') ,•

if history(.analoay candidate! . i,

factual then write In (
' YES

'

)

else writeln (
' NO 1

)

;

writeln
end;(*end for loop*)

end;(*end procedure print_water_reasoning*)

(1)

) . index
'YES

index
index_

num.

)

')

num.) .date ,

'

num.) .unit,

'

country =

) . index_num.) .update_source =

print_subsistence_reasoning;

(*loop control variable

procedure
var

i : integer
becjin

page

;

v;r ite In; write In; writeln ; write In; write In;
writein(' SUBSISTENCE SUPPLY REASONING');
wr ite In; write In; v;r ite In; write In;
writeln
writeln
writeln
writeln

.

writeln;
v/riteln

'

writeln
_

writeln

•

wriceln

'

writeln
writeln
writeln

The analogous operations are evaluated on the strength
of their similarity to the current operation in those'
areas pertinent to subsistence consumption. Each of t

points of similarity are weighted independently.'),-
he ') ;

The weighting of each
item name. i.e. (3) =

item is in parenthesis below the
3 points for AF_GROUND_SUPPORT'

)

);

'Up to three previous operations are considered in the
'adjustment algorithm, with those operations with the '

'highest number of quality points being chosen for this
,
'purpose .

'
)

;

wr ite In,- write In,- write In,- writeln ,- writeln ;

writeln

'

DATE UNIT UNIT UPDATE
NAME SOURCE

);

);
);

(1)
!;

writeln
writeln
writeln

.

writeln,-
writelnj' (1)
write In (

'

write In; write In;
for i:= 1 to num_candidates do

begin
write (history! . analogy_candidate(.i
write (history! .analogy_candidate(.i
if history! .analogy candidate! .i.)

.

newrecord. unit then write! 'YES
else write! 'NO '

)

;

if history! .analogy_candidate(. i.) . index_num.) .update_sour

index_num
index_num

index num.

)

")

date
unit

unit =
•;i

;

ce =

81

factual then writeln(' YES
'

)

else write In (
' NO 1

)

;

writeln
end; (''end for loop*)

end; (^end procedure print_subsistence reasoning*)

procedure print_fuel_reasoning;
var

i : integer;
begin

page ;

writein; writeln ; write In; write In; writeln ,•

writeinC FUEL SUPPLY REASONING
write In; write In,-write In; write In;
writeln('The analogous operations are evaluated on the strength')

'cf their similarity to the current operation in those');
•areas pertinent to fuel supply consumption. Each of the'
'points of similarity are weighted independently.');

(*loop control variable

>;

writemf
writelm
writeln(
writeln;
writeln
writeln

.

writeln;
writeln(
writelm

);

The weighting of each item is in parenthesis below the ')

;

item name. i.e. (2) = 2 points for AF_GROUND_SUPPORT
')

;

TERRAIN
UPDATE

')

;

SOURCE
'

) ;

);

)

)

Up to three previous operations are considered in the '

adjustment algorithm, with those operations with the ')

writeinf ' highest number of quality points being chosen for this
writeln (

'

purpose .

')

;

wr itein ; write In; write In; write In; write In;
write (

'

-- ')

writeln (

'

)

;

write (' DATE UNIT AF
writeinC UNIT COUNTRY OPERATION
write (' GRND_S?T
writeln (

' NAME NAME NAME
write ('

writeln (
'-- --');

writeln;
write ('

(2) (3) ')

;

writeinC (1) (1) (1) (2) ');
write (

'

writeln('- -')

;

write In; writeln;
for i:= 1 to num_candidates do

begin
write (history (. analogy_candidate
write (history (.analogy_candidate
if history (.analogy_candidate(.

i

newrecord.A?_ground spt then write

(

else write (' NO '")
<•

if history (.analogy
r
_candidate(. i.) . index_num

newrecord. terrain then write('YES '

else write ('NO '

)

;

if history (.analogy candidate (.i.) .index_num
newrecord. unit then write(' YES ')

else write (
' NO ')

;

if history (.analogy_candidate(. i.) . index_num
newrecord. country then write('YES

else write ('NO '
)

{

-

if history (. analogy_candidate(. i.) . index_num
= newrecord. oDeration_name then write('

else write ('NO '

)
(

-

if history (.analogy candidate(. i.) .index_num.) .update_source
factual then writeinC YES 1

)

else writeln(' NO
')

;

writeln
end;(*end for loop*)

end;(*er.d procedure print_fuel_reasoning*)

);

index.
index_

index_num,
YES

num,
num,

date, '

unit,
,AF_ground_spt

, terrain =

, unit =

.country =

operation_nam«
YES '

)

82

(*loop control variable

procedure print_ammo_reasoning;
var

i : integer;
begin

page

;

wr ite In,- write In,-write In,-write In,-write In,-

write In (

'

AMMUNITION REASONING 1

)

;

wr ite In; write In; write In,-write In,-

writeln!
writeln(
writeln!
writeln!
writeln,-
writeln

'

writeln
writeln
writeln
writeln

The analogous operations are evaluated on the strength'
of their similarity to the current operation in those 1

)

areas pertinent to ammo supply consumption. Each of the
points of similarity are weighted independently.');

The weighting of each item is in parenthesis below the
item name. i.e. (3) = 3 points for AF_GROUND_SUPPORT

')

;

);

VISIBILITY

The three previous operations with the highest number of
quality points are used in the adjustment algorithm.');

write In; write In,-write In,-write In,-write In;
write (

'

writeln (
' ')

write(' DATE UNIT AF TERRAIN
writeln('UNIT COUNTRY OPERATION UPDATE')
write (' GRND_SPT
writeln('NAME NAME NAME SOURCE 1

)

write (
'

writeln (

'

- ')

writeln,-
write!' (3) (2)
writelnC (1) (1) (l) (D ');
write f'

);

(1)

.date,

'

.unit,

'

_ground. spt =

writeln('
wr ite In,- write In;
for i:= 1 to num_candidates do

begin
write (history! . analogy_candidate! . i.) . index_num,
write (history (. analogy_candidate(. i.) . index_num.

.

if history (. analogy_candidate (. i
.

) . index_num.) . AF
newrecord.AF_ground spt then write('YES

else write! ' NO '~)
;

if history(.analogy^candidate (. i.). index_num.). terrain =
newrecord. terrain then write('YES ')

else write! 'NO ')

;

if history! .analogy candidate! . i.). index_num
newrecord. visibflitv then write! ' YES

else write! ' NO '")
;

if history! .analogy candidate! .i.). index_num.) .unit =
newrecord. unit then write! 1 YES ')

else write! 'NO '

)

;

if history! .analogy_candidate(. i.

)

newrecord. country then write! 'YES
else write! 'NO ')

;

if history! . analogy_candidate ! . i .
) . index_num.) . operaticn_name

= newrecord. operation_name then write!' YES ')

else write! 'NO ')

;

if history! .analogy candidate! . i.). index_num.) .update_source =

factual then wrfteln(' YES')
else writeln! ' MO

')

;

writeln
end; (*end for loop*)

end;(*end procedure print_ammo_reasoning*)

) .visibility =

index_num.) .country =

procedure print_Gen_supplies_reasoning;
var

i : integer; (*loop control variable
begin

page ;

wr ite In; write In; write In; write In,- write In,-

83

wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
wr
fo

iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
iteln
ite_(

'

iteln(
ite(

'

iteln(
ite('

iteln(

(

'

GENERAL SUPFLY REASONING
')

;

; write In; write In; write In;
The analogous operations are evaluated on the strength');
of their similarity to the current operation in those');
areas pertinent to general supply consumption. Each of the

')

;

weiqntecpoints of similarity are independently.
'

)

•

The weighting of each item is in parenthesis below the '

)

item name. i.e. (2) = 2 points for AF_GROUND_SUPPCRT')

;

Up to three previous operations are considered in the ');
adjustment algorithm, with those operations with the ');
highest number of quality points being chosen for this '

)

purpose •
'

) ;

; write In; write In; write In; write In;

DATE
UNIT

NAME

UNIT
COUNTRY

NAME
rite(
iteln(

'

iteln;
ite(

'

itelnC (1)

AF
OPERATION
GRND_S?T

NAME

TERRAIN
UPDATE

SOURCE

(1)

date

,

unit, \\

end;

ite(
itelnC
i te In; write In;
r i:= 1 to num_candidates do
begin

write (history (. analogy_candidate(. i.) . index_num,
write (his tory(. analogy_candidate(. i.) . index_num,
if history (. analogy_candidate(. i.) . index_num.) . AF_ground_spt

newrecord. AF_ground spt then write('YES ')

else write (' NO '")
;

if history(.analogy
r
_candidate(. i.). index_num.). terrain =

newrecord. terrain then write ('YES ')

else write ('NO ')

;

if history(.analoay candidate(.i.). index_num.) .visibility =

newrecord. visibility then write(' YES ')

else write (
' NO '

)

•

if history (.analogy candidate (. i.). index_num.) .unit =

newrecord. unit then write(' YES ')

else write (' NO ')

;

if history (.analogy_candidate(. i.). index_num.) .country =

newrecord. countrv then write('YES ')

else write('NO ')

;

if history (.analogy_candidate(. i.) . index_num.) .operation_name
= newrecord. cperation_name then write(' YES ')

else write ('NO ')

;

if history(.analogy candidate (. i.). index_num.) .update_source
factual then writeln(' YES')

else writelnC NO') ;

writeln
end; (-end for loop*)
(*end procedure print_Gen_supplies_reasoning*)

begin (^procedure adjust_estimate*)
newrecord. analogy_info.num_analogies :=

;

index := file_counter •

num candidates := 0;
while (num_candidates < max_candidates) and (index > 0) do

begin
if analogous (index) then

begin
num_candidates := num_candidates + 1;
if newrecord. analogy_info.num_analogies < 3 then

84

newrecord.analogy_info.num_analogies :=

newrecord. analogy_info.num_analogies + 1;
analogy_candidate(.num_candidates.) . index_num:= index;

end;
index := index -1;

end;(*end while statement*)
print_analogies

;

if newrecord. analogy_info.num_analogies > then
begin

for i:= 1 to num_candidates do
begin

analogy_candidate(. i.) • strength_pts -.=

compute_strength(0 , 0,0,1,1,0,0,0,0,0,1,1,0,0,
analogy candidate (. i .) . index_num)

;

analogy_candidate(. i.) .used:= false
end;

for i:= 1 to newrecord. analogy_info.num_analogies do
begin

newrecord. analogy info. analogies (. i.) .analogy_index:=
pick_best analogy,-

newrecord. ana~logy_info. analogies (. i.) .date :
=

history(. nev/re cord. ana logy_info. ana logies(. i.

)

.analogy_index.) . date;
newrecord.analogy_info.analogies(. i.) .unit :=

history(. newrecord. ana logy_info. ana logies(. i.

)

.analogy_index.) . unit;
newrecord.analoqy_info.analogies(. i.)

.
quality_pts :=

compute_s trength (0,0,0,1,1,0,0,0,0,01,1,0,0,
newrecord. analoay_info. analogies (. i.) .analogy_index)

end;
print_water_reasoning;
adjust(l)

;

for i:= 1 to num_candidates do
begin

analogy_candidate(. i.) .strength_pts :=

compute_s trength (,0,0,1,0,1,0,0,0,0,1,0,1,0,
analogy__candidate(. i.) . index_num) ;

analogy_candidate(. i.) .used:= ialse
end;

for i:= 1 to newrecord. analogy_info.num_analogies do
begin

newrecord. analogy info. analogies (. i.) .analogy_index:=
pick_best anaTogy;

newrecord. ana~logy_info . analogies (. i.) .date :
=

history (.newrecord.analogy_info.analogies(. i.

)

. analogy_index .) . date

;

newrecord.analogy_info.analogies(. i.) .unit :=

history(. newrecord. ana logy_info. ana logies(. i.

)

. analogy_index
.

) . unit

;

newrecord. analogy_info. analogies (. i.) .quality_pts :=

compute_s trength (0,0,0,10,1,0,0,0,0.1,0,1,0,
newrecord. analogy_info. analogies (. i.) .analcgy_index)

end;
print_subsistence_reasoning,-
adjust (2) ;

adjust (3) ;

for i:= 1 to num_candidates do
begin

analogy_candidate(. i.) .strength_pts :=

compute_strength (1,1,1,1,1,1,1,2,1,2,2,1,1,1,
analogy_candidate (. i

.
) . index_num)

;

analogy_candidate(. i.) .used:= false
end;

for i:= 1 to newrecord. analogy_info.num_analogies do
begin

"newrecord. analogy info. analogies (. i.) .analogy_index: =

pickjoest anaTogy;
newrecord. ana~lcgy_info. analogies (. i.) .date :

=
history(. nev7re cord. ana logy_info. ana logies(. i.

)

.analogy_index.) .date

;

85

newre cord. ana logy_info.analogies(. i.) .unit :=

history(. newrecord. analogy_info. analogies (. i.

)

. analogy_index
.

) . unit

;

newrecord. analoay_info . analogies (. i
.

)
.
quality_pts :=

compute_strength(

1

,1,1,1,1,1,1,2,1,22,1,1,1,
newrecord. analogy_info. analogies (. i.) .analogy_index)

end;
print_Gen_supplies_reasoning;
adjust (4)

;

adjust (6)

;

adjust(19
(

adjust (20]
adjust(2l'
for i:= 1 to num_candidates do

begin
analogy_candidate(. i.) . strength_pts :=

co.Tlpute_strength(1 ,0,1,1,1,1,1,2,0,3,1,1,1,1,
analogy_candidate(. i.) . index_num)

;

analogy_candidate(. i.) .used:= false
end;

for i:= 1 to newrecord. analoqy_info.num_analogies do
begin

newrecord. analogy info. analogies (. i.) .analogy_index:=
pick_best analogy;

newrecord. ana"logy_info. analogies (. i.) .date :=
history(. newrecord. analogy_info. analogies (. i.

)

.analogy_index.) .date •

newrecord. ana logy_info. ana logies(. i.) .unit :=

history(. newre cord. ana logy_info. analogies (. i.

)

. analogy_index.) .unit
newrecord. ahaloav_info . analogies (. i .

)
.
quality_pts :=

compute_strength(

1

,0,1,11,1,1,2,0,3 1,1,1,1,
newrecord. analogy_info. analogies (. i.) .analogy_index)

end;
print_fuel_reasoning;
adjust (5)

;

for i:= 1 to num_candidates do
begin

anaiogy_candidate(. i.) . strength_pts :=

compute_strength(1 ,1,1,1,1,1,1,3,1,2,1,1,1,1,
analogvcandidate (. i .) . index_num)

;

analogy_candidate(. i.) .used:= false
end;

for i:= 1 to newrecord. analogy_info.num_analogies do
begin

newrecord. analogy_info . analogies (. i
.

) . analogy_index -.=

pick_best analogy;
newrecord. ana"logy_info . analogies (. i.) . date :

=

history (.newrecord. analcgy_info. analogies (. i.

)

. analogy_index.) .date

;

newrecord.a*nalogy_info.analogies(. i.) .unit :
=

history(. newre cord. ana logy_info. ana logies(. i.

)

. analogy_index.) .unit;
newrecord. ahalogy_info . analogies (. i .)

.
quality_pts :=

compute_strength(l ,1,1,1,1,1,1,3,1 ,2 . 1,1,1,1,
newrecord. ana logy_info . analogies (. i .) . analogy_index)

end;
print ammo_reasoning;
adjust (7) ;

adjust (8) ;

adjust(9;

•

ad^ust(10
(

adiustcll
ad^ust(12

(

adyust(13
(

ad^ust(14
(

adqust(15
(

adiusti 16
i

ad^ust(17"

adjust(l3;

86

end
else for adjustment_index:= 1 to num_supply_items do

newrecord. consumption (. adjustment_index.) .adjustments
page;

end; (*end procedure adjust_estimate*)

= 0;

begin (*begin procedure create_estimate*)
water_estimate

;

class_I_estimate

;

compute_general_supplies(4, 3.67
compute_general_supplies(6, 4.00
compute_general_supplies(19 ,15.00
corrpute_general_supplies(20, 1 .22
compute_general_

i

_supplies (21 , 2 . 50
diesei_fuel estimate;
if newrecord". duration = first_day then

begin
compute_ammo(7 , taskforce(. 13

.
)

.
quant ity+taskfor ce(. 14.) .quantity,

52,62,29,35,10,12)
compute_ammo(8, taskforce (. 15,
compute_ammo(9 , taskforce (. 16,
compute_ammo(10, taskforce(. 7,

compute_ammo(ll , taskforce (. 8,

compute_ammo(12 , taskforce (. 9,

compute_ammo(13 , taskforce (.11

,

compute_ammo(14, taskforce(. 5.

compute_ammo(15 , taskfcrce(. 6.

compute_ammo(16, taskforce(.17

.

compute_ammo(17 , taskforce(. 18,
compute_ammo(18, taskforce(.19,

end

.quantity, 7, 9, 4, 6, 3,

4

. quantity ,2,3,1,2,1,1

. quantity , 376 , 423 , 244 , 27 5 , 132 , 148

.quantity, 374, 520, 229, 313, 115 ,160)

.quantity, 288, 395, 136, 255, 34,115)

.quantity, 3984, 4800, 2241, 2700, 747,
900);

.quantity, 97,116,54,65,18,22);

. quantity, 109, 130, 61, 73, 20,24) ;

. quantity, 17 5, 210, 99, 118, 33,39}

;

.quantity, 433, 519, 243, 292, 81, 97)

;

.quantity, 99, 118, 56, 67, 19, 22)

else begin
compute_ammo(7 , taskforce(.13.)

.
quantity+taskforce(.14.) .quantity,

28,38,16,21,5,7);
compute_ammo(8, taskforcef .15
compute_ammo(9 , taskforce(.16
compute_ammo(10 , taskforce(. 7
conpute_ammo(li , taskforce(. 8
compute_arr.mo(12 , taskforce(. 9
compute_ammo(l3 , taskforce(.11

compute_ammo(14, taskforce(. 5.
compute_ammo(15 , taskforce(. 6.
compute_ammo(16 , taskforce (. 17

.

compute_ammo(17 , taskforce (.18.
compute_ammo (18, taskforce (.19.
end;

adjust_estimate

;

for i:= 1 to num_supply_items do
newrecord. consumption^ . i.) . final_estimate .-

=

newrecord. consumption! .i.) .general_estimate +
newrecord. consumption (. i.) .adjustments;

file_counter := file_counter + 1;
history(. file_counter .) := newrecord

end; (^end procedure create_estimate*)

.quantity, 8, 10, 5, 7, 3, 4)

?

.quantity, 3, 4, 2, 2, 1,10)

;

.quantity, 381, 467, 248, 304, 133, 163

.quantity, 374, 530, 229, 324, 120, 163
•quantity, 231, 363, 181, 235, 82, 106)

;

.quantity, 2151, 2880, 1210, 1620, 403,
540) ;

.quantity, 53,70,30,40,10,13);

. quantity, 59, 79, 33 , 45, 11, 15) ;

.quantity, 96, 127, 54, 72, 18, 24)

;

. quantity, 236, 314, 133, 177, 44,59)

;

.quantity, 54, 72, 30, 40, 10, 13)

procedure print_estimate;
var

i : integer; (*index variable for printing consumption array*)
begin

page ;writeln,-writeln;
write (' ');
writeln('AUTOMATED LOGISTICS PLAN');
writeln;writeln,-writeln;
writeln(' DATE ' , newrecord. date)

;

writeln('UNIT ' , newrecord. unit)

;

87

case newrecord.tf type of
armor
mech
inf

na; (*end

writelnf'TASK FORCE TYPE
writeln('TASK FORCE TYPE
writeln('TASK FORCE TYPE

case statement*)
ase newrecord.tf size ot

bn : writeln('TASK FORCE SIZE
bde : writeln('TASK FORCE SIZE

nd;
ase newrecord. mission of

attack : writeln('MISSION
defend : writeln('MISSION

nd;
ase newrecord. duration of

first_day : writeln('DURATION
succeeding_day : writeln(' DURATION

nd;(*end case statement*)
ase newrecord. intensity of

ARMOR
')

;

MECHANIZED
INFANTRY

'

)

BATTALION 1

);
BRIGADE

')

;

ATTACK

'

DEFEND'

FIRST DAY')

;

SUCCEEDING DAY');

hi : write In ('COMBAT
mid : write In ('COMBAT
low : write In ('COMBAT

nd; (*end case statement*)
ritein('OPERATION NAME
ase newrecord. area of

conus : writeln(' AREA
eurcpe : writelm ' AREA
kore'a : writeln(' AREA

nd; (*end case statement*)
ricein(; COUNTRY
ase newrecord. climate of

hot
temperate

INTENSITY
INTENSITY
INTENSITY

HIGH'

)

MID');
LOW

')

;

,newrecord.operation_name)

;

CONUS
')

;

EUROPE
')

;

KOREA
'

)

, newrecord. country)

;

writeln('CLIMATE
writeln ('CLIMATE
writeln ('CLIMATE

statement*)
of
'TERRAIN
1 TERRAIN
'TERRAIN
' TERRAIN

HOT
')

;

TEMPERATE
')

;

COLD')

OPEN
')

;

WOODS
')

;

BUILT UP');
MOUNTAINS

')

;

)

cold
end; (*end case
case newrecord. terrain

cpen : writeln
woods : writeln
built_up : writeln
mountains: writeln.

end; (*end case statement*)
case newrecord. visibility of

cood : writeln('VISIBILTY
fair : writeln('VISIBILTY
poor : writeln('VISIBILITY

end; (*end case statement*)
if newrecord. AF_ground_spt = true

writeln('AF GROUND SUPPORT
else writeln('AF GROUND SUPPORT
if newrecord. moppcondition = true

writeln('MOPP LEVEL 3/4
else writeln('MOPP LEVEL 3/4
writeln('PERSONNEL STRENGTH '

if newrecord. ration_pclicy = b_c
writeln('RATION POLICY

else writeln('RATION POLICY
writeln;writeln;
write ('HISTORICAL DATA AVAILABLE ');
if newrecord. analogy_info.num_analogies

begin
writeln('YES')

;

writeln;
write (' DATE ');
for i:= 1 to newrecord. analogy info.num^analogies do

write (newrecord. analogy_in£b . analogTes (. i
.

) . date

,

writeln;
write (' UNIT ');
for i-.= 1 to newrecord. analogy info.nimwnalogies do

write (newrecord. analogy_in£b.analogres(. i.) .unit,
writeln;

end

GOOD 1

FAIR 1

POOR 1

then
YES

NO ')

.

then
YES '

)

NO ') ;

,newrecord.personnel_strength:4)

;

b then
b_c b

'

)

c_c_B
')

;

> then

);

);

88

ADJUSTMENTS
')

;

else writeln('NO 1

)

;

write In; write In;
write (

'

')

;

writeln('LOGISTICS ESTIMATE');
vr ite In; wri tell-
urite (' SUPPLY ITEM GENERAL EST.
writeln(' FINAL EST.

') ;

write In; write In;
for i:= 1 to num_supply_items do

begin
write (newrecord.consumption(. i.) . supply_item)

;

write (

'

'

) ;

write(newrecord.consumption(. i.) .general_estimate :6)

;

write (

'

'

) ;

write { newre cord.consumption (. i.) .adjustments :6)

;

writer ');
write(newrecord.consumption(. i.) . final_estimate :6) •

write(' ') ;

writeln(newrecord.consumption(. i.) . unit_of_measure)

;

writeln
end; (*end printinq out consumption array*)

end; (*end proce'dure prlntestimate*)

begin (*begin log_estimate*)
build_task_force

;

create_scenario

;

create_es timate

;

print_estimate

;

page
end; ("'end procedure iog_estimate*)

MODULE HISTORY UPDATE

procedure history_update;
var

update„record : oprecord; (^record to be updated *)
1
found
continue char

integer; (*index into the historical files *)

boolean; v*true if record found in history files *)
char; (*user response to continue with program*;

procedure readunit;
const

blanks =
var

ok : boolean;
answer : char;
unitname : unitstring;

begin
ok:= false;
repeat

writeln(' Enter name of unit which conducted the operation 1

);
writeln('For example- l/33rd ');
readln(unitname)

;

strconcat(unitname , blanks)

;

writeln;
writeln('The name of the unit was ', unitname);
writeln;writeln

;

-

writeln('Is this the correct unit name?');
writelni ' Enter the number corresponding to your answer.');
writeln(' 1 - yes, unit name is correct '

'

writeln(' 2 - no, unit name is incorrect 1

readln(answer)

;

if answer = ' 1
' then

begin
update_record.unit := unitname;
ok:= true

end

89

until ok = true;
writeln;

end; (*end procedure readunit*)

boolean
;

datestring;
char;

procedure readdate;
var

ok
newdate
answer

begin
ok:= false,-
repeat

writeln(' Enter the date on which the operation took place.');
writeln('Use the form dd/mm/yy');
readln\newdate)

;

writeln;
writein('The date of the operation was ', newdate);
writeln;
writelm ' Is this the correct date?');
writelm 'Enter the number corresponding to your answer.');
writelm 1

1 - yes, date is correct '*

writeln^' 2 - no, date is incorrect'
readln(answer)

;

if ansv;er = ' 1
' then

begin
UDdate_record.date .-= newdate;
ok:= true

end
until ok = true;
writeln;

end; (^end procedure readdate*)

procedure readnission;
var

ok : boolean;
mission_code : char;

begin
writeln(' Enter the number corresponding to the correct mission.');
writelm ' 1 - attack
writeln(' 2 - defend
ok:= false;
repeat

readln(mission_code)

;

if mission_code = '1' then
becin

update_record. mission := attack;
ok:= true

end
else if mission_code = '2' then

begin
update_record.mission:= defend;
ok:= true

end
else writeln('you have made an error in input, try again.');

until ok = true;
writeln,-

end; (*end procedure readmission*)

procedure readupdate_source;
var

ck : boolean;
answer : char,-

begin
writeln (

' What was the source of the information for this update');
writeln;
writeln(' Enter the correct number for your response');
writeln(' 1 - estimate 1

);

90

writeln(' 2 - factual information '

)

;

ok:= false;
repeat

readln(answer)

;

if answer = '
1

' then
begin

nistory(. i.) .update_source := estimate;
ok:= true

end
else if answer = '2' then

begin
nistory(. i.) .update_source := factual;
ok:= true

end
else writeln('You have made an error in input, try again. 1

);
until ok = true;
write In; write In; write In

end; (*end procedure readupdate_source*)

procedure input_consumption;
var

j, (*index variable into the consumption array *

amount : integer; (*the user provided consumption figures *
begin

with history(.i.) do
begin

writelnf 'Enter the actual consumption for each of the supply
writelm ' items that follow. If no actual consumption figures
writeln('are available, enter .

,

);
writei.n;writeln;
for j := 1 to num_supply_items do

begin
write ('Enter the number of ');
write (consumption (. j .

) . supply_item, '
'

)

;

writeln(consumption(
.
3

•
) • unit_of_measure ,

' ')

;

readin(amount) .-

writeln(amount) .-

consumption (
.
j .

) .actual_consumption:= amount;
v;riteln

end;
update := true

end'
end; ('"end procedure input_consumption*)

begin (*begin history_update*)
writeln('You will now be asked information about the operation.');
writeln('for v/hich you have actual consumption data. '

) ,-writeln;
readunit;
reacdate

;

readmission;
found := false;
i:= 1;
while (not found) and (not (i > file_counter)) do

with update_record do
begin

if (history(. i.) .unit = unit) and
(history^ . i.) .date = date) and
(history(. i.) .mission = mission)

then begin
found := true;
readupdate_source

;

input_consumption
end

else i:= i+ l

end;
if found then begin

writeln;write"ln;

91

writeln("The record has been updated .')
end

else
begin

writeln('There is no record in the historical file which '

)

;

writelm 'matches the unit, date, and mission you have specified 1

);
writeln(' Check your input and try again ')

end;
writeln(' Enter c to continue');
repeat
"readln(continue_char)

until continue_char = 'c';
page

end; ("end procedure history_update*)

MODULE DELETE RECORD

procedure delete_record;
var

delete_record : oprecord;
i : integer;
found : boolean;
continue_char : char;

*name of record to be deleted
*index into the historical files
*true if record found in history files *

(

*user response to continue program

procedure readunit;
const

blanks = '
'

;

var
ok : boolean;
answer : char;
unitname •. unitstring;

begin
ck:= false;
repeat

writeln(' Enter name of unit which conducted the operation');
writeln('For example- l/33rd ');
readln(unitname)

;

strconcat(unitname , blanks)

;

writeln;
writeln('The name of the unit was ', unitname);
v;r ite In; writeln ;

writeln? 'Is this the correct unit name?');
writelm 'Enter the number corresponding to your answer.');
writeln(, ' 1 - yes, unit name is correct f<

writeln(' 2 - no, unit name is incorrect
readln(answer) ;

if ansv/er = ' 1
' then

begin
delete_record.unit := unitname;
ok:= true

end
until ok = true;
writeln

end; (*end procedure readunit*)

procedure readdate;
var

ok : boolean;
newdate : datestring;
answer : char;

begin
ok:= false,-
repeat

writeln('Enter the date on which the operation took place.');
writeln ('Use the form dd/mm/yy 1

);
readln(newdate)

;

writeln;

92

writeln('The date of the operation was ', newdate);
writeln;
writeln? 'Is this the correct date? 1

);
writelm 'Enter the number corresponding to your answer. 1

);
writelm 1

1 - yes, date is correct
writeln(' 2 - no, date is incorrect
readln(answer)

;

if answer = '
1

' then
begin

delete_record.date := newdate;
ok:= true

end
until ok = true;
writeln

end; (*end procedure readdate*)

procedure readmission;
var

ok : boolean;
mission_code : char;

begin
ok:= false;
repeat

writeln(' Enter the number corresponding to the correct mission. 1

)

writelm ' 1 - attack
writeln(' 2 - defend
readln(rnission_code) ;

if mission_code = '1' then
begin

delete_record. mission := attack;
ok:= true

end
else if mission_code = '2' then

begin
delete_record.mission:= defend;
ok:= true

end
else writeln('you have made an error in input, try again. 1

);
until ok = true ,•

writeln
end; (*end procedure readmission*)

procedure deletion;
var

j : integer; (*index variable into the history files*)
begin

for j := i to (file counter -1) do
history(

.
j

.
) := ~history(

.
j + 1

.)

;

file_counter := file_counter -1;
writeln,-writeln;
writeln('The record was found and deleted. 1

)

end; (*end procedure deletion*)

begin (*begin module delete_record*)
writeln('You will now be asked information about the operation. 1

);
writeln(' that you want deleted. 1

);
writeln;
readunit;
readdate •

readmission;
found := false;
i:= 1;
while (not found) and (not (i > file_counter)) do

with delete_record do
begin

if (history(.i.) .unit = unit) and

93

history (.1
,history(. i,

then begin
found := true;
deletion

end
i:= i+ 1

date = date) and
mission = mission)

then

There is no
matches the
Check your input

record in
unit, date

and

else
end;

if (not found
begin

writeln
write In
writeln

end;
write In; writeln ;writeln;write(

'

writeln(' Enter c to continue');
repeat

readln(continue_char)
until continue_char = 'c';
page

ena; "*end procedure delete_record*)

the historical file which '

)

;

, and mission you have specified 1

);
try again '

)

MODULE PRINT HISTORY

procedure print_history

;

*index
*index

file counter do

var

1 : integer,-
begin

for j := 1 to
begin

writeln ; write In;
w r i t e (

'

writeln ('HISTORICAL RECORD 1

)

write In; write In; write In;
writeln('DATE
writeln ('UNIT
case history (

.
j .) . tf_tvpe of

variable
variable

for history array
for printing consumption array

,history(
,history(

date
un

te);
it);

armor
mech
inf

end; (*end

writeln ("'fASK FORCE TYPE
writeln('TASK FORCE TYPE
writeln('TASK FORCE TYPE

case statement*)

SIZE
SIZE

case history(
.
j

.
) • tf size of

bn : writelnf'TASK FORCE
bde : writeln('TASK FORCE

end; (*end case statement*)
if history (

.
j

.
) .mission = attack then

writeln('MISSION
else writeln^ 'MISSION
case history(.j .) .duration of

first_day : writeln (
' DURATION

succeeding_day :writeln(' DURATION
end;(*end case statement*)
case histcry(.j .). intensity

hi : writeln (
' CCHEAT

mid : writeln(' COMBAT
low : writeln(' COMBAT

end; (*end case statement*)
writeln(' OPERATION NAME '

case history(
.
j

.
) .area of

conus : writelnf ' AREA
eurcpe : writelm ' AREA
korea : v;riteln(' AREA

end; (*end case statement*)
writeln(' COUNTRY '

case history(.j .) .climate of
hot : writeln('CLIMATE

ARMOR
')

;

MECHANIZED
INFANTRY

'

)

BATTALION 1

BRIGADE
')

;

ATTACK
'

)

DEFEND')

;

FIRST DAY')

;

SUCCEEDING DAY

of
INTENSITY
INTENSITY
INTENSITY

HIGH 1

MID'
LOW

)

, history (
.
j

.
) .operation_name

CONUS
')

;

EUROPE
')

;

KOREA
'

)

,history(
.
j

.

)

country)

HOT
')

;

94

temperate : writeln(' CLIMATE
cold : writeln('CLIMATE

end; (*end case statement*)
case history(

.
j .)• terrain of

open
woods
built_up
mountains

end; (*end case
case history (

.

j

writein('TERRAIN
writeln ('TERRAIN
writeln ('TERRAIN
writeln ('TERRAIN
statement*)
) .visibility of

TEMPERATE
'

)

COLD'

)

OPEN
')

;

WOODS
') ;

BUILT UP
'

)

:

MOUNTAINS
') ;

iood f writeln('VISIBILTY
fair : writeln('VISIBILTY
poor : writeln('VISIBILITY

end; (*end case statement*)
if history(

.
j

.) .AF_ground_spt = true then
writeln('AF GROUND SUPPORT YES')

else writeln('AF GROUND SUPPORT NO 1

);
if history(o •

) -mcpocondition = true then
writeln('MOPP LEVEL 3/4 YES')

else writeln('MOPP LEVEL 3/4 NO');
write ('PERSONNEL STRENGTH ');
writeln(history(

.
j

.
) .personnel_strength:4)

;

if history(.j .). ration policy = b_c b then
writeln('RATION POLICY ~b_c_b ')

else writeln ('RATION POLICY c_c_b
'

)

if (history(.j .) .update = true) then
case histcry(.3 .

) .update_source of

GOOD'
FAIR'
POOR 1

none
estimate
factual

end (*end case

writeln('UPDATE
writein('UPDATE
writeln ('UPDATE
statement*)

SOURCE
SOURCE
SOURCE

NONE
') ;

ESTIMATE'

)

FACTUAL')

;

NONE
'

)

)

do

else writeln('UPDATE SOURCE
writeln,-writeln;
write ('HISTORICAL DATA AVAILABLE
if history (

.
j

.
) .analogy_info.num_analogies > then

begin
write In ('YES') ;

writeln;
write (' DATE ');
for i:= 1 to history(

.
j

.
) .analogy_info.num_analogies

begin
write (his tory(

.
j

.
) .analogy_info.analogies(. i.) .date)

;

write (' ')

end;
writeln;
write (' UNIT ');
for i:= 1 to history(

.
j

.) .analoqy_info.num_analogies do
write (history (

.
j

.
; . analogy_info. analogies (. i.) .unit ,

'
')

;

writeln;
end

else writeln('NO')

;

writeln;writeln;
write (' ');
writeln('LOGISTICS ESTIMATE');
writeln;writeln;
write (' SUPPLY ITEM GENERAL EST. ADJUSTMENTS');
writeln(' FINAL EST,
writeln;writeln;
for i:= 1 to num_supply_items

begin
write(history(
write

,

'

(

history(

ACTUAL CONS .

'

)

history(

history(

history(

1;
j-

j-

O-

0-

do

consumption(. i.

)

consumption(. i.

)

supply_item)

;

general_estimate :6)

;

,consumption(. i.) .adjustments :6)

;

consumption(. i
.

) . final_estimate :6)

;

consumption(. i.) .actual_consumption:6)

95

writeln(history(
.
j .) .consumption! . i.) .unit_of_measure :6)

;

writeln
end; (*end printing out consumption array*)

cage
end (*end printing all the files in the history array*)

end; (*end procedure print_history*)

MODULE PRINT DIRECTORY
xix*AX*KXXX*KK*X*AKAxix*XXXX***A*XAXTX^*XXX*iA*XX**Ax****K***XXX*X**X \

procedure print_directory;
var

history_count : integer; (*index variable into hitory array *)
continue_char : char; (*user response to continue program *)

begin
writeln,-writeln;
write (' ');
writeln('DIRECTORY'

)

;

writeln;writeln; writeln;
if file_counter = then writeln(' There are no files in storage.')
else begin

write (' DATE UNIT MISSION');
writeln(' UPDATED');
writeln;
for history_count := 1 to file_counter do

begin
write ('

' , history (.history_count.) .date) •

write (
' ' ,history(. history_count

.
) .unit)

;

if history (.history_count.) .mission = attack then
write (' ATTACK'

else write (' DEFEND'

)

if history(.historv_count.) .update = true then
writelnC " YES 1

)

else writeln(

'

NO')

;

writeln
end

end;
writeln;
write(' ');
writeln(' Enter c to continue');
repeat

readln(continue_char)
until continue_char = 'c';

enc5; (*e'nd procedure print_directory*)

(x*xxxxx*xx*A***xx*****x*******x**x***xxx*Ax*x**A****x***aA****
MODULE END SESSION

xxxxxxAAxxx*xxoxxxx**xxxxxxxxxxxxxxxxlxx*xxxxxxx*xxxxxxxx*xxi*x*xxxix \

procedure end_session;
var

i : integer; (*index variable to write historical files to
secondary memory *)

begin
finished:= true

;

rewrite(history file, 'hist oprecord a');
for i:= 1 to file counter do

write(history_file,history(. i.)

)

•

write In;writeln

;

writeln(' This session is now over. 1

);
writeln ; writeln

;

writeln('The key to modern warfare is logistics!')
end; (

>i:end procedure end_session*)

96

MAIN PROGRAM

begin (* main program *)
initialize;
repeat

module_choice •

case module_code of
'1'

: log_estimate;
history_update

;

delete^record;
print_nistory •

print_directory

;

end_session
end; (*end case statement*)

until finished = true
end. (*end main program*)

'2'
'3'
14.
151

97

APPENDIX E

PARTIAL PROGRAM IMPLEMENTATION IN COMMON LISP

This program is a partial implementation of the automated-logistics-planning

system in Appendix D. Specifically, this program performs the referencing and

calculations necessary to create the general estimates for the same supply items

identified in the automated logistics plans in Appendices A and B. The driver of the

program is function try. The principal data structures of the program are the user-

defined structures: operation, task force, and supply-item. The program accepts input

data on task force composition and operation attributes in the same manner as the

Pascal implementation of the program. There is no error checking done of user input.

Function create-supply-item performs the referencing and calculating involved in

creating estimates in accordance with current Army doctrine. The program stops here.

Two output documents are produced by the program:

1. Task Force Composition

2. Automated Logistics Plan

These documents are almost identical to their counterparts in appendices A and B.

The program does not permanently store information about the estimates it creates nor

does it conduct any of the reasoning discussed in chapter 3. One of the interesting

features of user-defined structures in Common Lisp is that after a structure has been

defined, Common Lisp provides functions that insert and retrieve data from fields

within instances of the defined structure. Make- < structure name> is such a function.

It creates an instance of a structure. The format of this function results in code that is

easy to read and understand. Specifically, make- < structure name> requires the

programmer to place the value for the fields of the instance of the structure next to the

corresponding field names. The program follows.

98

(defun try ()
format t " ")
create- ope rat ion)
format t " ")
terpri) (terpri) (terpri) (terpri)
^create-taskforce)
' create- suoply- item)
,
format t 1l ")
[write-output)
logistics -output)
format t " ")
taskforce-output)

)

(defstruct operation
date
unit
mission
climate
area
tf-type
tf-size
intensity
moppcondition
personnel
ration-policy)

(defun create-operation ()
(setq opl (make-operation date

unit
mission
climate
area
tf-type
tf-size
intensity
moppcondition
personnel
ration-policy

(read-date)
'read-unit)
read-mission,
read-climate
read-area)
read-tf-type
read-tf-size^
read- intensity)
read-moppcondition)
read-personnel)
read-rations)))

)

(defun read-date ()
(terpri) (terpri) (terpri) (terpri) (terpri)
(princ ''ENTER THE DATE OF THE OPERATION,
(read))

(defun read-unit ()
(terpri)
(orinc "ENTER THE NAME OF THE UNIT
(read))

99

(defun read-mission ()
(terpri)
(princ "ENTER THE MISSION TO BE PERFORMED
(read)

)

(defun read-climate ()
'terpri)
[princ "ENTER THE CLIMATE IN WHICH THE ")
.terpri)
s

princ r
' OPERATION WILL CONDUCTED. ")

read))

(defun read-area ()
(terpri)
(princ "ENTER THE AREA OF THE WORLD IN WHICH ")
(terpri)
(princ " THE OPERATION WILL TAKE PLACE. "

)

(read))

(defun read-tf-type ()
(terpri)
[princ ''ENTER THE TYPE OF TASK FORCE CONDUCTING ")
terpri)
|princ *' THE OPERATION. ")
read)

)

(defun read-tf-size ()
(terpri)
t

princ "ENTER THE SIZE OF THE TASK FORCE
read))

(defun read-intensity ()
(terpri)
(princ "ENTER THE INTENSITY EXPECTED
(read)

)

(defun read-moppcondition ()
'terpri)
[princ "DO YOU EXPECT THE TASK FORCE TO BE IN ")
terori)
[princ " MOPP LEVEL 3/4 ? ")
' terpri)
princ " ENTER YES OR NO ")

.read))

(defun read-personnel ()
'terpri)
[princ ''ENTER THE TOTAL NUMBER OF PERSONNEL ")
terpri)
,princ fl IN THE TASK FORCE ")

'read)

)

(defun read-rations ()
'terpri)
princ "ENTER THE RATION POLICY DURING THE ")
terpri)
'princ " OPERATION. EITHER b-c-b or c-c-b ")
'read)

)

100

(defstruct taskforce
m2
m3
mll3
m901
ml25al
mi06al
ml02
ml 09
mllO
mlrs
ml63
m730
ml
m60
tows
m222
m2mg
m60rr,g
ml6al)

(defun create-taskforce ()
(setq tfl (make-taskforce :m2Tl2 (read-data "

m3 1[read-data '

mll3 <
y

read-data '

m901 (

(

read-data '

rr.l25al <[read-data '

ml06al < read-data '

ml02 < read-data '

ml09 (

(

read-data '

mllO <[read-data
mlrs 1>read-data '

ml63 1^read-data '

m730 l

(

read-data '

ml 1

(

read-data '

m60 i^read-data '

tows 1^read-data '

m222 I^read-data '

m2mg 1 read-data '

m60mg
ml6al

^ead-data '

k
read-data '

m2 '

m3
'mll3
'm901
'ml25al
'ml06al
'ir,102

'ml09
'mllO
'mlrs
•ml63
'm730
'ml
'm60
'tows
'm222
'm2mg
'm60mg
'mloal)))

(defun read-data (x)
(terpri)
(princ "Enter the number of)
(orinc x)
(princ " in the task force ")
(read))

101

(defstruct supply-item
water
b-rations
mre-rations
class- I I -supplies
diesel-fuel
class -IV- supplies
class -VI I -supplies
class-VII I -supplies
class-IX-supplies
tan*- ammo -105mm
tow-ammo
dragon-ammo
howitzer-ammo- 10 5mm
howitzer- ammo- 15 5mm
howitzer- ammo- Sin
vulcan-ammo-20mm
mortar- ammo -31mm
mortar- ammo- 107mm
mg-ammo- . 50-caliber
mg- ammo -7. 6 2mm
rifle-ammo-5 . 56mm)

(defun create-supplv-item ()
(setq supl

(make -supply- item
:water
:b-rations
mre-rations
class-II-supplies
diesel-fuel
class- IV- supplies
class-VII-supolies
class -VII I -supplies
class-IX-supplies
tank- ammo- 10 5mm

: tow-ammo

: dragon-ammo

: howitzer- ammo- 10 5mm

: howitzer- ammo- 15 5mm

: howitzer- ammo- 8in

:vulcan-ammo-20mm

: mortar- ammo- 8 lmm

: mortar -ammo- 107mm

:mg-ammo- . 50-caliber

:mg-ammo-7 ,62mm

:rifle-ammo-5 . 56mm

(water-e
;b-rats)
>mre-rat
,
compute
.diesel)
.compute
,' compute
.compute
:ompute

(compute

(compute'

(compute'

(compute-

compute-

(compute-

(compute-

(compute-

(compute-

(compute-

(compute-

(compute-

st)

s)
-factor 3.67)

•facto
•facto
facto
facto
ammo

r 4)
r 15)
r 1.22)
r 2.50)
(+(taskforce-ml tfl)

taskforce-m2 tfl)

'

ammo

-ammo

ammo

•ammo

ammo

ammo

ammo

ammo

ammo

ammo

ammo

.
52 62 29 35 16 12

(taskforce-tows tfl)
7 9 4 6 2 4)

(taskforce-m222 tfl)
2 3 12 11)

(taskforce-ml02 tfl)
376 423 244 275 132 I

(taskforce-ml09 tfl)
146 203 95 132 51

(taskforce-mllO tfl
130 177 85 115 46

(taskforce-ml63 tfl)
3984 4800 2241 2700 <

(taskforce-ml25al tfl)
97 116 54 65 18 22

(taskforce-ml06al tfl)
1C9 130 61 73 20 I

(taskforce-m2mg tfl)
175 210 99 118 33

(taskforce-m60mg tfl)
433 519 243 292 81

(taskforce-ml6al tfl)
99 113 56 67 19 22

102

(defun wate
(cond (

r-est ()
and (equal (operation-climate opl)

(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-mcppconait
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operaticn-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moDpcondit
(equal (operation-ra"tion-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* "(operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate 6d1
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

(and (equal (operation-climate opl
(equal (operation-moppcondit
(equal (operation-ration-pol
(* (operation-personnel opl)

'hot)
ion opl)
icy opl)
5.4)5

) 'hot)
ion opl
icy opl
4.9)\

) 'hot)
ion opl)
icy opl)
4.9)5

) 'hot)
ion opl
icy opl
4.4))

) ' tempe
ion opl)
icy opl)
4.7)5

) ' tempe
ion opl"
icy opl
4.2)5

) ' tempe
ion opl'
icy opl
3.2)5

)
' tempe

ion opl
%

icy opl
2.7)5

). 'cold
ion opl
icy opl
3.7))

),
'cold)

ion opl
icy opl
3.2))

)_
'cold

ion opl
icy opl
3.7)5

) 'cold)
ion opl)
icy opl)
3.2)5))

'yes)
'b-c-b)

' yes)
'c-c-b)

no)
b-c-b)

'no)
'c-c-b)

rate)
es)
-c-b)

rate)
'yes)
'c-c-b)

rate)
'no)
'b-c-b)

rate)
'no)
'c-c-b)

'yes)
'b-c-b)

yes)
c-c-b)

no)
'b-c-b)

'no)
'c-c-b)

(defun b-rats ()
(cond ((equal (operation-ration-policy opl)

(* (operation-personnel opl) 2))
(t (operation-personnel opl))))

b-c-b)

(defun mre-rats(

)

(cond ((equal (operation-ration-policy opl)
(
x (operation-personnel *opl) 2))

(t (operation-personnel opl)))

c-c-b)

(defun compute-factor (x)
(/ (* (operation-personnel opl) x) 2000))

103

(defun diesel ()
(cond ((equal (operation-area opl) 'korea)

(* (taskforce-m2 tfl) 3.0
' taskforce-m2 tf
taskforce-m2 tf
taskforce-m3 tf

'*
(taskforce-m3 tf

*
(taskforce-m3 tf
^askforce-mllS tf

'* (taskforce-mll3 tf
*

(taskforce-mil3 tf
taskforce-m901 tf
taskforce-m901 tf
taskforce-m901 tf
taskforce-ml25al tf
taskforce-mi25al tf
taskforce-ml25al tf
taskforce-ml06al tf

'* (taskforce-ml06al tf
* (taskforce-mlC6al tf

taskforce-ml02 tf
' taskforce-iT.109 tf

'* (taskforce-ml09 tf
* (taskforce-ml09 tf
'*

(taskforce-mllO tf
*

(taskforce-mllO tf
taskforce-mllO tf
taskforce-mlrs tf

(* (taskforce-mlrs tf
* (taskforce-mlrs tf

taskforce-ml63 tf
taskforce-ml53 tf
askforce-ml63 tf

taskforce-m730 tf
taskforce-m730 tf
taskforce-m730 tf

'*
(taskforce-ml tf

'* (taskforce-ml tf
taskforce-ml tf

(* (taskforce-m.60 tf
(* I taskforce-m50 tf
(* (taskforce-m60 tf

(equal (operation-area opl) 'europe)
'+(* (taskforce-m2 tfl) 3.0 6.4)

'taskforce-m2 tfl) 5.5 18.0)
taskfcrce-m2 tfl) 5.5 8.6!
taskforce-m3 tf
taskforce-m3 tf
taskforce-m3 tf
taskforce-mll3 tf
taskforce-mll3 tf
taskforce-mll3 tf

'* (taskforce-m901 tf
'*

(taskforce-m901 tf
*

(taskforce-m901 tf
[* (taskforce-ml25al tf
,* (taskforce-ml25al tf
*

(taskforce-ml25al tf
*

(taskforce-mlC6al tf
*

I taskforce-mlGoal tf
'*

(taskforce-ml06al tf
* (taskforce-mi02 tf

taskfcrce-ml09 tf
'* (taskforce-ml09 tf
'* (taskforce-ml09 tf

taskforce-mllO tf
'* (taskforce-mllO tf
* (taskforce-mllO tf

104

tc

[* (taskforce-mlrs tfl) 5.0 1.0,
'* (taskforce-mlrs tfl) 5.0 6.2

taskforce-mlrs tfl) 4.5 8.9
'* (taskforce-ml63 tfl) 4.0 1.0
* (taskforce-ml63 tfl) 6.0 5.2

taskforce-m!63 tfl) 5.5 13.0
taskforce-m730 tfl) 4.0 0.5
taskforce-m730 tfl) 6.0 1.3'

taskforce-m730 tfl) 5.5 2.6'

taskforce-ml tfl) 5.0 10.8;
taskforce-ml tfl) 6.5 56.6
taskforce-ml tfl) 5.0 44.7'
taskforce-m60 tfl) 4.5 2.0'

taskforce-m5C tfl) 6.5 28.1'
,taskforce-m60 tfl) 4.5 35.7)))

(equal (operation-area ool) 'conus)
+ (* (taskforce-m2 tfl) 3.0 6.4)

'* (taskforce-m2 tfl) 5.5 13.
N

* (taskforce-m2 tfl) 5.5 8.6
(

* (taskforce-m3 tfl) 3.0 6.4,
* (taskforce-m3 tfl) 5.5 18.0,

taskforce-m3 tfl) 5.5 8.6
taskforce-mll3 tfl) 7.0 1.0
(taskforce-mll3 tfl) 6.8 8.6

* (taskforce-mll3 tfl) 1.9 10.3'
* (taskforce-m901 tfl) 3.0 1.0'

taskforce-m901 tfl) 5.5 8.6'

taskforce-m901 tfl) 5.5 8.9'
askforce-ml25al tfl) 5.0 1.0'

taskforce-ml25al tfl) 3.8 8.6'
* (taskforce-ml25al tfl) 1.6 10.3'
* (taskforce-ml06al tfl) 5.3 1.0'
* (taskforce-ml06al tfl) 3.1 10.0'
* (taskforce-mi06al tfl) 4.3 13.3'
* (taskforce-ml02 tfl) 24.0 0.2'
'* (taskforce-ml09 tfl) 6.2 1.0'
* (taskforce-ml09 tfl) 1.9 11.8'

^taskforce-ml09 tfl) 2.9 16.1'
(taskforce-mllO tfl) 4.1 1.6'

'* (taskforce-mllO tfl) 1.9 12.5'
'* (taskforce-mllO tfl) 4.1 14.3'
'* (taskforce-mlrs tfl) 5.0 1.0'
'* (taskforce-mlrs tfl) 4.0 6.2'

taskforce-mlrs tfl) 4.5 8.9'
taskforce-ml63 tfl) 2.4 1.0|
taskforce-ml63 tfl) 7.2 5.2'

* (taskforce-ml63 tfl 4.8 13.0'
* (taskforce-m730 tfl) 4.0 0.5'
'* (taskforce-m730 tfl) 6.0 1.3
'*

{ taskforce-m730 tfl) 5.5 2.6'
'* (taskforce-ml tfl) 5.2 10.8'

taskforce-ml tfl) 3.3 56.6'
'* (taskforce-ml tfl) 3.4 44.7'
'*

(taskforce-m60 tfl) 4.2 2.0'
* (taskforce-m60 tfl) 8.5 28.
* (taskforce-m60 tfl) 2.9 35.7)))))

(defun compute-ammo (x ha hd ma md la Id)

(cond ((and (equal (operation-mission opl) 'attack)
(equal (operation-intensity opl) 'hi))
(* x ha))

((and (equal (operation-mission opl) 'defend)
(equal (operation-intensity opl) 'hi))
(* x hd)

)

105

((and (equal (operation-mission opl) 'attack
(equal (operation-intensity opl) 'mid))
(* x ma)

)

((and (equal (operation-mission opl) 'defend)
(equal (operation-intensity opl) 'mid))
(* x md)

)

((and (equal (operation-mission opl) 'attack)
(equal (operation-intensity opl) 'low))

x la))
((and (equal (operation-mission opl) 'defend)

"eaual (operation-intensity opl) 'low))
:**x Id))))

(defun write-output ()
(terpri) (terpri) (terpri

1

) (terpri)
>rinc fl OPERATION 1 ')

:erpri)
'princ " date ")
^prinl (operation-date opl))
h

terpri)
princ " unit ")
.prinl (operation-unit opl))
terpri)
>princ '' mission ")

>prinl (operation-mission opl))
v
terpri)
^prihc " climate ")

>prinl (operation-climate opl))
^terpri)
>princ " area ")
^rinl (operation-area opl))
y

terpri)
^rihc " tf-type ")

>prinl (operation- tf-type opl))
^terpri)

t

pr:nc " tf-size ")

^prinl (operation-tf-size opl))
^terpri)
>princ " intensity "

>prinl (operation-intensity opl)
,-cerpri)
i princ " moppcondition ")
prinl (operation-moppcondition opl))
^terpri)
>princ " personnel-strength "

>prinl (operation-personnel cpl)
^erpri)
s
prihc " ration-policy ")
^prinl (operation-ratioh-oolicy opl))
(terpri))

106

(defun taskforce-output ()
(terpri) (terpri) (terpri) (terpri) (terpri
>rinc " TASKFORCE COMPOSITION"
:erpri) (terpri) (terpri)
princ " M2 IMF FIGHTING VEHICLE
.prinl (taskforce-m2 tfl))
.terpri)
[princ " M3 CAV FIGHTING VEHICLE
>prinl (taskforce-m3 tfl))
terpri)
'princ *' M113 PERS CARRIER
>rinl (taskforce-mll3 tfl))
: e rp r i

)

;princ " M901 CBT VEH ITV
>rinl (taskforce-m901 tfl))
:erpri)

[princ " M125A1 81NM CARRIER
[prinl (taskforce-m!25al tfl))
.terpri)
princ " M106A1 107MM CARRIER
.prinl (taskforce-ml06al tfl))
'terpri)
'princ " M102 105HM HOWITZER
>prinl (taskforce-ml02 tfl))
terpri)
[princ " M109 155MM SP HOWITZER
>prinl (taskforce-ml09 tfl))
s

terpri)
(princ '' MHO 8INCH SP HOWITZER
[prinl (taskforce-mllO tfl))
"terpri)
[princ " LAUNCH-LOAD MLRS
(

prinl (taskforce-mlrs tfl))
terpri)
[princ ' M163 VULCAN AIR DEFENSE
>rinl (taskforce-ml63 tfl))
:erpri)

[princ " M730 CHAP AIR DEFENSE
>prinl (taskforce-m730 tfl))
terpri)
[princ fl Ml TANK 105MM
)rinl (taskforce-ml tfl))
;erpri)

[princ '' M60 TANK 105MM
>prinl (taskforce-m60 tfl))
terpri)
[princ " TOW LAUNCHER
^orinl (taskforce-tows tfl))
terori)
,prihc " M222 DRAGON LAUNCHER
(

prinl (taskforce-m222 tfl))
terpri)

v

princ ' M2 50 CALIBER MG
>rinl (taskforce-m2mg tfl))
:erpri)

[princ fl M60 MG
,prinl (taskforce-m60mg tfl))
terpri)
[princ " M16A1 RIFLE
.orinl (taskforce-ml6al tfl))
[format t " "))

107

(defun logistics-output ()
(terpri) (terpri)
(princ " LOGISTICS ESTIMATE ")
:erpri) (terpri)

(

princ " SUPPLY ITEM GENERAL ESTIMATE")
(

terpri) (terpri) (terpri)
,princ " Water ")

format t " 10D" (round (supply-item-water supl)))
Drinc " gallons")

(

terpri)
(

prihc " B-Rations ")
"format t " 10D" (supply-item-b-rations supl))
)rinc " rations")
:erpri)

|princ " MRE-Ration ")
'format t " 10D" (supply-item-mre-rations supl))
princ " rations ")
terpri)
princ " Class II Supplies ")
format t " 10D" (round (supply-item-class-II-supplies supl)))
(princ " STOMS ")

(terpri)
(princ " Diesel Fuel ")
(format t " 10D" (round (supply-item-diesel-fuel supl)))
princ " gallons ")

terpri)
princ " Class IV Supplies ")
format t " 10D" (round (supply-item-ciass-IV-supplies supl)))
princ " STONS '•)

(terpri)
(princ " Tank ammo 105mm ")

format t " 10D" (supply-item-tank-ammo-105mm supl))
princ " rounds ")

terpri)
princ " TOW ammo ")
format t " 10D" (supply-item-tow-ammo supl))
(princ " rounds ")

(terpri)
(princ " DRAGON ammo ")
(format t " 10D" (supply-item-dragon-ammo supl))
(princ " rounds ")

(terpri)
(princ " Howitzer ammo 105mm ")
(format t " 10D" (supply-item-howitzer-ammo-105mm supl))
^princ " rounds ")

(terpri)
(orihc " Howitzer ammo 155mm ")
(format t " I0D" (supply-item-howitzer-ammo-155mm supl))
(princ " rounds ")

(terpri)
(princ " Howitzer ammo 8 inch ")
(format t " 10D" (supply-item-howitzer-ammo-8in supl))
(orinc " rounds ")
(terpri)
^princ " Vulcan ammo 20mm ")
format t " 10D" (supply-item-vulcan-ammo-20mm supl))
princ " rounds")
terpri)
princ " Mortar ammo 81mm ")
format t " 10D" (supply-item-mortar-ammo-81mm supl))
princ " rounds ")

terpri)
princ " Mortar ammo 107mm ")
format t " 10D" (supply-item-mortar-ammo-107mm supl))
princ " rounds ")

terpri)
,princ " MG ammo .50 caliber ")
(format t " 10D" (supply-item-mg-ammo- . 50-caliber supl))
princ " rounds ")

terpri)

108

princ '

format
^princ '

' terpri)
(

princ "

format
.princ "

Aerpri)
princ '"

format
Drir.c '

> terpri)
>princ '"

format
^orinc '

terpri'
princ '

format
princ '

terpri)

MG ammo 7.62mm ")
" 10D" (supply-item-mg-ammo-7 .62mm supl))
rounds ")

rifle ammo 5.56mm ")
11 10D" (supply-item-rifle-ammo-5. 56mm supl))
rounds "

)

Class VII supplies ")
" 10D" (round (supply-item-class-VII-supplies supl)))
STONS ")

Class VIII supplies ")
" 10D" (round (supply-item-class-VIII-supplies supl)))
STONS ")

Class IX supplies ")
" 10D" (round (supply-item-class-IX-supplies supl)))
STONS ")

109

LIST OF REFERENCES

1. Department of the Army Pamphlet 350-31, TMACS User's Manual- Battalion

Level, Fort McPhearson, Georgia, 1987.

2. Ivanov, Dmitrii Afanasevich, V.P. Savelyev, and P.V. Shemansky, Fundamentals

of Tactical Command and Control : a Soviet view, translated and published under

the auspices of the United States Air Force; published with the approval of the

ALL-Union Copyright Agency of the U.S.S.R., Washington, D.C., U.S. Air

Force. 197 7
.

3. Department of the Army Field Vlanual FM 101-10-1. Staff Officers Field Manual,

Organizational, Technical and Logistics Data, Baltimore, Maryland, 1978.

4. U.S. Army Command and General Staff College, Student Text 101-2, Planning

Factors, 1985.

5. Smith, Bernard T.. Focus Forecasting Computer Techniques for Inventory Control,

C.B.I. Publishing Company, Inc., 1978.

6. Foulds, L. R., Combinatorial Optimization for Undergraduates, Springer- Verlag.

1984.

7. Charniak. Eugene and Drew McDermott, Introduction to Artificial Intelligence,

Addison-Wesley Publishing Company, 1986.

S. Millward, Richard B. and Thomas D. Wickens, "Concept-Identification Models"

in : Krantz, D. H., et al., Learning, Memory, and Thinking, in volume I of the

Contemporary Developments in Mathematical Psychology series. W. H. Freeman

and Co., 1974.

9. Koffman, Elliott B., Problem Solving and Structured Programming in Pascal,

Addison-Wesley Publishing Company. Inc., 1985.

10. Wilensky Robert, Common Lispcraft, W. W. Norton and Company, 1986.

11. MacLennan, Bruce J., Principles of Programming Languages, Holt, Rinehart and

Winston, 19S3.

110

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Department Chairman, Code 52 1

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5000

4. Computer Technology Programs, Code 37 1

Naval Postgraduate School

Monterey, CA 93943-5000

5. Associate Professor Neil C. Rowe 1

Code 52Rp
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5000

6. Professor Robert B. McGhee 1

Code 52Mz
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5000

7. Commander 1

United States Army Logistics Center

Fort Lee, VA 23S0 1-6000

8. The Quartermaster General, United States Army 1

Fort Lee, VA 23801-5032

9. Defense Losistics Studies Information Exchange 1

U.S. Army Logistics Management Center

Fort Lee,VA 23801-6043

10. Mr. Russell Davis 1

HQ. USACDLC
ATTN : ATEC-IM
Fort Ord, CA 92152

111

11. Captain Mark J. Davis

80 Moore Lane

Washingtonville, NY 10992

12. Mr.& Mrs. Joseph W. Davis

3321 Spiceland Drive

Boise, ID S3 704

112

/
18 3 5 y->

Thesib

D17167 Davis

c i Automated loj

planningvisitig historical

analogue's.

